Simple and convenient microfluidic flow rate measurement based on microbubble image velocimetry

  • Man Tang
  • Feng Liu
  • Jia Lei
  • Zhao Ai
  • Shao-Li Hong
  • Nangang ZhangEmail author
  • Kan LiuEmail author
Research Paper


Accuracy and precision velocimetry plays an important role at microfluidic device application, particularly in biomedicine and chemical synthesis. However, most of the developed methods are limited by complicated structure design and microparticle injection. Herein, utilizing a gas bubble generator and remover based on a permeable membrane of polydimethylsiloxane, a simple and convenient microbubble image velocimetry (µBIV) flow sensor has been flexibly designed and integrated into microfluidic device to measure flow rate. Benefited from the contactless of gas channel and fluid channel, this µBIV flow sensor features the bubble generation and removing without fluid invasion in the microchannels, and the formed gas bubbles are stable and can be easily distinguished from the complex matrix. With good stability and reproducibility, this µBIV flow sensor is also successfully demonstrated to long-term and real-time measure the flow rate of the whole blood, which has a board application prospect and may pave the way to develop devices with better performance.


Microbubble image velocimetry (µBIV) Flow sensor Polydimethylsiloxane (PDMS) membrane Gas bubble generator and remover Microfluidic chip 



This work was supported by National Natural Science Foundation of China (81527801 and 81372358), and Hubei key laboratory of digital textile equipment.

Supplementary material

10404_2019_2285_MOESM1_ESM.pdf (359 kb)
Supplementary material 1 (PDF 359 kb)


  1. Abi-Samra K, Kim TH, Park DK, Kim N, Kim J, Kim H et al (2013) Electrochemical velocimetry on centrifugal microfluidic platforms. Lab Chip 13(16):3253–3260. CrossRefGoogle Scholar
  2. Cheri MS, Latifi H, Sadeghi J, Moghaddam MS, Shahraki H, Hajghassem H (2014) Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst 139(2):431–438. CrossRefGoogle Scholar
  3. Collins J, Lee AP (2004) Microfluidic flow transducer based on the measurement of electrical admittance. Lab Chip 4(1):7–10. CrossRefGoogle Scholar
  4. deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems (review). Nature 442(7101):394–402. CrossRefGoogle Scholar
  5. Ernst H, Jachimowicz A, Urban GA (2002) High resolution flow characterization in bio-MEMS. Sens Actuators A 100(1):54–62. CrossRefGoogle Scholar
  6. Fu TT, Ma YG (2015) Bubble formation and breakup dynamics in microfluidic devices: a review. Chem Eng Sci 135:343–372. CrossRefGoogle Scholar
  7. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen KV, Peck A et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis (article). Nature 529(7587):509. CrossRefGoogle Scholar
  8. Guo JH (2017) Smartphone-powered electrochemical dongle for point-of-care monitoring of blood beta-ketone. Anal Chem 89(17):8609–8613. CrossRefGoogle Scholar
  9. Guo J (2018) Smartphone-powered electrochemical biosensing dongle for emerging medical IoTs application. IEEE Trans Ind Inform 14(6):2592–2597. CrossRefGoogle Scholar
  10. Guo JH, Ma X (2017) Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels (article). Biosens Bioelectron 94:415–419. CrossRefGoogle Scholar
  11. Guo JH, Pui TS, Ban YL, Rahman ARA, Kang Y (2013) Electrokinetic analysis of cell translocation in low-cost microfluidic cytometry for tumor cell detection and enumeration (article). IEEE Trans Biomed Eng 60(12):3269–3275. CrossRefGoogle Scholar
  12. Guo JH, Li HG, Chen Y, Kang YJ (2014) A microfluidic impedance cytometer on printed circuit board for low cost diagnosis (article). IEEE Sens J 14(7):2112–2117. CrossRefGoogle Scholar
  13. Guo J, Liu X, Kang K, Ai Y, Wang Z, Kang Y (2015a) A compact optofluidic cytometer for detection and enumeration of tumor cells. J Lightwave Technol 33(16):3433–3438. CrossRefGoogle Scholar
  14. Guo J, Ma X, Menon NV, Li CM, Zhao Y, Kang Y (2015b) Dual fluorescence-activated study of tumor cell apoptosis by an optofluidic system. IEEE J Sel Top Quantum Electron 21(4):392–398. CrossRefGoogle Scholar
  15. Guo JH, Huang XW, Ai Y (2015c) On-demand lens less single cell imaging activated by differential resistive pulse sensing (article). Anal Chem 87(13):6516–6519. CrossRefGoogle Scholar
  16. Guo JH, Kang YJ, Ai Y (2015d) Radiation dominated acoustophoresis driven by surface acoustic waves (article). J Colloid Interface Sci 455:203–211. CrossRefGoogle Scholar
  17. Guo JH, Huang XW, Ma X (2018) Clinical identification of diabetic ketosis/diabetic ketoacidosis acid by electrochemical dual channel test strip with medical smartphone (article). Sens Actuators B 275:446–450. CrossRefGoogle Scholar
  18. Hashmi A, Heiman G, Yu G, Lewis M, Kwon HJ, Xu J (2013) Oscillating bubbles in teardrop cavities for microflow control. Microfluid Nanofluid 14(3–4):591–596. CrossRefGoogle Scholar
  19. Hong SL, Wan YT, Tang M, Pang DW, Zhang ZL (2017) Multifunctional screening platform for the highly efficient discovery of aptamers with high affinity and specificity. Anal Chem 89(12):6535–6542. CrossRefGoogle Scholar
  20. Hua SZ, Sachs F, Yang DX, Chopra HD (2002) Microfluidic actuation using electrochemically generated bubbles. Anal Chem 74(24):6392–6396. CrossRefGoogle Scholar
  21. Huang XW, Farooq U, Chen J, Ge YK, Gao HJ, Su JT et al (2017) A surface acoustic wave pumped lensless microfluidic imaging system for flowing cell detection and counting (article). IEEE Trans Biomed Circuits Syst 11(6):1478–1487. CrossRefGoogle Scholar
  22. Jimenez-Valdes RJ, Rodriguez-Moncayo R, Cedillo-Alcantar DF, Garcia-Cordero JL (2017) Massive parallel analysis of single cells in an integrated microfluidic platform. Anal Chem 89(10):5210–5220. CrossRefGoogle Scholar
  23. Jung JY, Kwak HY (2007) Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluid Nanofluid 3(2):161–169. CrossRefGoogle Scholar
  24. Kang YJ, Yeom E, Lee SJ (2013) Microfluidic biosensor for monitoring temporal variations of hemorheological and hemodynamic properties using an extracorporeal rat bypass loop. Anal Chem 85(21):10503–10511. CrossRefGoogle Scholar
  25. Kang JH, Super M, Yung CW, Cooper RM, Domansky K, Graveline AR et al (2014) An extracorporeal blood-cleansing device for sepsis therapy. Nat Med 20(10):1211–1216. CrossRefGoogle Scholar
  26. Katayama K, Uchimura H, Sakakibara H, Kikutani Y, Kitamori T (2007) In situ microfluidic flow rate measurement based on near-field heterodyne grating method. Rev Sci Instrum 78(8):083101. CrossRefGoogle Scholar
  27. Kerby MB, Legge RS, Tripathi A (2006) Measurements of kinetic parameters in a microfluidic reactor. Anal Chem 78(24):8273–8280. CrossRefGoogle Scholar
  28. Klank H, Goranovic G, Kutter JP, Gjelstrup H, Michelsen J, Westergaard CH (2002) PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour (article). J Micromech Microeng 12(6):862–869. CrossRefGoogle Scholar
  29. Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ et al (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472. CrossRefGoogle Scholar
  30. Nam J, Jang WS, Lim CS (2018) Micromixing using a conductive liquid-based focused surface acoustic wave (CL-FSAW). Sens Actuators B 258:991–997. CrossRefGoogle Scholar
  31. Okulan N, Henderson HT, Ahn CH (2000) A pulsed mode micromachined flow sensor with temperature drift compensation. IEEE Trans Electron Devices 47(2):340–347. CrossRefGoogle Scholar
  32. Pan LJ, Tu JW, Ma HT, Yang YJ, Tian ZQ, Pang DW et al (2017) Controllable synthesis of nanocrystals in droplet reactors. Lab Chip 18(1):41–56. CrossRefGoogle Scholar
  33. Patrascioiu A, Fernandez-Pradas JM, Palla-Papavlu A, Morenza JL, Serra P (2014) Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection. Microfluid Nanofluid 16(1–2):55–63. CrossRefGoogle Scholar
  34. Peng SC, Nagarkar SP, Lowen JL, Velankar SS (2013) Circuit model for microfluidic bubble generation under controlled pressure. Microfluid Nanofluid 15(6):797–805. CrossRefGoogle Scholar
  35. Plecis A, Malaquin L, Chen Y (2008) A method for fast monitoring of flow rates in microfluidic channels. J Appl Phys 104(12):124909. CrossRefGoogle Scholar
  36. Quinto-Su PA, Lim KY, Ohl CD (2009) Cavitation bubble dynamics in microfluidic gaps of variable height. Phys Rev E 80(4):047301. CrossRefGoogle Scholar
  37. Shang XP, Huang XY, Yang C (2016) Bubble dynamics in a microfluidic chamber under low-frequency actuation. Microfluid Nanofluid. CrossRefGoogle Scholar
  38. Shinohara K, Sugii Y, Aota A, Hibara A, Tokeshi M, Kitamori T et al (2004) High-speed micro-PIV measurements of transient flow in microfluidic devices. Meas Sci Technol 15(10):1965–1970. CrossRefGoogle Scholar
  39. Shrewsbury PJ, Muller SJ, Liepmann D (2001) Effect of flow on complex biological macromolecules in microfluidic devices. Biomed Microdevices 3(3):225–238. CrossRefGoogle Scholar
  40. Song WZ, Psaltis D (2010) Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography. Opt Express 18(16):16561–16566. CrossRefGoogle Scholar
  41. Tandiono, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Dumke R et al (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci USA 108(15):5996–5998. CrossRefGoogle Scholar
  42. Tang M, Wen C-Y, Wu L-L, Hong S-L, Hu J, Xu C-M et al (2016) A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Lab Chip 16(7):1214–1223. CrossRefGoogle Scholar
  43. Wang HL, Wang Y (2009) Measurement of water flow rate in microchannels based on the microfluidic particle image velocimetry (article). Measurement 42(1):119–126. CrossRefGoogle Scholar
  44. Wang M, Yin W, Holliday N (2002) A highly adaptive electrical impedance sensing system for flow measurement (article). Meas Sci Technol 13(12):1884–1889. CrossRefGoogle Scholar
  45. Wang JB, Sullivan M, Hua SZ (2007) Electrolytic-bubble-based flow sensor for microfluidic systems. J Microelectromech Syst 16(5):1087–1094. CrossRefGoogle Scholar
  46. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. CrossRefGoogle Scholar
  47. Williams SJ, Park C, Wereley ST (2010) Advances and applications on microfluidic velocimetry techniques (review). Microfluid Nanofluid 8(6):709–726. CrossRefGoogle Scholar
  48. Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research (review). Lab Chip 10(8):939–956. CrossRefGoogle Scholar
  49. Yeo JC, Kenry, Lim CT (2016) Emergence of microfluidic wearable technologies. Lab Chip 16(21):4082–4090. CrossRefGoogle Scholar
  50. Zhao YJ, Cho SK (2007) Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles. Lab Chip 7(2):273–280. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Electrical EngineeringWuhan Textile UniversityWuhanPeople’s Republic of China
  2. 2.Hubei Engineering and Technology Research Center for Functional Fiber Fabrication and TestingWuhan Textile UniversityWuhanPeople’s Republic of China
  3. 3.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  4. 4.Hubei Key Laboratory of Digital Textile EquipmentWuhanPeople’s Republic of China

Personalised recommendations