Advertisement

Comparison of the abnormal diffusion characteristics of tumor cells

  • J. Y. Hyun
  • S. H. Kim
  • D. K. Kim
  • S. Choi
  • J. Key
  • Y. S. Kim
  • S. W. Lee
  • S. Y. LeeEmail author
Research Paper
  • 89 Downloads

Abstract

The random dynamics of two different tumor cell types on a substrate were observed under a microscope and analyzed based on three parameters—mean square displacement (MSD), turning angle distribution (TAD), and velocity autocorrelation function (VACF)—under well-controlled experimental conditions wherein only thermal energy existed. A two-dimensional analysis on the substrate showed linear MSD but a lowered diffusion coefficient compared to the prediction by Stokes–Einstein equation due to particle substrate interaction. Moreover, anomalous characteristics based on the MSD and TAD of the two different cells, A549 (adenocarcinomic human alveolar basal epithelial cells) and MCF-7 (breast cancer cell line; estrogen, progesterone receptors +, HER2 −), were observed, and the nonlinear MSD at a short time scale was detected. This result is attributed to the localization error from the bright-field image of a different cell taken, while the cell moved randomly on the substrate. Parameters related to random process and localization errors were employed to distinguish the two cell types. This study could be useful for the characterization of cellular properties and cell types.

Keywords

Abnormal diffusion Tumor cell Mean square displacement Turning angle distribution Velocity autocorrelation function 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2016R1D1A1A02937019, NRF-2017R1A2B2002076), Republic of Korea, and the Yonsei University Future-Leading Research Initiative of 2015 (2015-22-0059).

Supplementary material

10404_2019_2284_MOESM1_ESM.docx (270 kb)
Supplementary material 1 (DOCX 269 kb)
10404_2019_2284_MOESM2_ESM.avi (1 mb)
Supplementary material 2 (AVI 1072 kb)
10404_2019_2284_MOESM3_ESM.avi (18.7 mb)
Supplementary material 3 (AVI 19164 kb)
10404_2019_2284_MOESM4_ESM.avi (18.6 mb)
Supplementary material 4 (AVI 19012 kb)

References

  1. Berglund AJ, McMahon MD, McClelland JJ, Liddle JA (2008) Fast, bias-free algorithm for tracking single particles with variable size and shape. Opt Express 16(18):14064–14075CrossRefGoogle Scholar
  2. Burov S, Tabei SA, Huynh T, Murrell MP, Philipson LH, Rice SA, Gardel ML, Scherer NF, Dinner AR (2013) Distribution of directional change as a signature of complex dynamics. Proc Natl Acad Sci 110(49):19689–19694MathSciNetCrossRefGoogle Scholar
  3. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388CrossRefGoogle Scholar
  4. Einstein A (1906) Zur Theorie der Brownschen Bewgung. Ann Phys 19:371CrossRefGoogle Scholar
  5. Fedotov S, Tan A, Zubarev A (2015) Persistent random walk of cells involving anomalous effects and random death. Phys Rev E 91(4):042124MathSciNetCrossRefGoogle Scholar
  6. Felderhof B (2005) Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion. J Phys Chem B 109(45):21406–21412CrossRefGoogle Scholar
  7. Goldman AJ, Cox RG, Brenner H (1967) Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid. Chem Eng Sci 22(4):637–651CrossRefGoogle Scholar
  8. Hafner AE, Santen L, Rieger H, Shaebani MR (2016) Run-and-pause dynamics of cytoskeletal motor proteins. Sci Rep 6Google Scholar
  9. Huang K, Szlufarska I (2015) Effect of interfaces on the nearby Brownian motion. Nat Commun 6:8558CrossRefGoogle Scholar
  10. Huang R, Chavez I, Taute KM, Lukić B, Jeney S, Raizen MG, Florin E-L (2011) Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat Phys 7(7):576–580CrossRefGoogle Scholar
  11. Kepten E, Bronshtein I, Garini Y (2013) Improved estimation of anomalous diffusion exponents in single-particle tracking experiments. Phys Rev E Stat Nonlin Soft Matter Phys 87(5):052713CrossRefGoogle Scholar
  12. Kim DK, Hyun JY, Kim SC, Kim HS, Lee SY (2016) Inertial effects on cylindrical particle migration in linear shear flow near a wall. Microfluid Nanofluid 20(5):75CrossRefGoogle Scholar
  13. Kubo R (1966) The fluctuation-dissipation theorem. Rep Prog Phys 29(1):255CrossRefGoogle Scholar
  14. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369CrossRefGoogle Scholar
  15. Li L, Cox EC, Flyvbjerg H (2011) ‘Dicty dynamics’: Dictyostelium motility as persistent random motion. Phys Biol 8(4):046006CrossRefGoogle Scholar
  16. Molina JJ, Nakayama Y, Yamamoto R (2013) Hydrodynamic interactions of self-propelled swimmers. Soft Matter 9(19):4923–4936CrossRefGoogle Scholar
  17. Ohta T (2017) Dynamics of deformable active particles. J Phys Soc Jpn 86(7):072001CrossRefGoogle Scholar
  18. Parthasarathy R (2012) Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 9(7):724–726CrossRefGoogle Scholar
  19. Perrin E (1934) Dispersion diélectrique pour des molécules ellipsoïdales. J Phys Radium 5:497CrossRefGoogle Scholar
  20. Perrin F (1936) Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J de Physique et le Radium 7(1):1–11CrossRefGoogle Scholar
  21. Reif F (2009) Fundamentals of statistical and thermal physics. Waveland PressGoogle Scholar
  22. Roldan-Vargas S, Pelaez-Fernandez M, Barnadas-Rodriguez R, Quesada-Perez M, Estelrich J, Callejas-Fernandez J (2009) Nondiffusive Brownian motion of deformable particles: breakdown of the “long-time tail”. Phys Rev E Stat Nonlin Soft Matter Phys 80(2 Pt 1):021403CrossRefGoogle Scholar
  23. Rother J, Nöding H, Mey I, Janshoff A (2014) Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biol 4(5):140046CrossRefGoogle Scholar
  24. Selmeczi D, Mosler S, Hagedorn PH, Larsen NB, Flyvbjerg H (2005) Cell motility as persistent random motion: theories from experiments. Biophys J 89(2):912–931CrossRefGoogle Scholar
  25. Shaebani MR, Sadjadi Z, Sokolov IM, Rieger H, Santen L (2014) Anomalous diffusion of self-propelled particles in directed random environments. Phys Rev E 90(3):030701CrossRefGoogle Scholar
  26. Son M, Lee G, Son J, Choi S, Kim Y, Lee S-Y, Yoon Y-R, Yoon DS, Lee SW (2015) Characterization of anomalous movements of spherical living cells on a silicon dioxide glassy substrate. Biomicrofluidics 9(1):014102CrossRefGoogle Scholar
  27. Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36(5):823CrossRefGoogle Scholar
  28. Veeramasuneni S, Yalamanchili M, Miller J (1996) Measurement of interaction forces between silica and α-alumina by atomic force microscopy. J Colloid Interface Sci 184(2):594–600CrossRefGoogle Scholar
  29. Weber SC, Thompson MA, Moerner W, Spakowitz AJ, Theriot JA (2012) Analytical tools to distinguish the effects of localization error, confinement, and medium elasticity on the velocity autocorrelation function. Biophys J 102(11):2443–2450CrossRefGoogle Scholar
  30. Wu P-H, Giri A, Sun SX, Wirtz D (2014) Three-dimensional cell migration does not follow a random walk. Proc Natl Acad Sci 111(11):3949–3954CrossRefGoogle Scholar
  31. Wu P-H, Giri A, Wirtz D (2015) Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat Protoc 10(3):517–527CrossRefGoogle Scholar
  32. Zaburdaev V, Uppaluri S, Pfohl T, Engstler M, Friedrich R, Stark H (2011) Langevin dynamics deciphers the motility pattern of swimming parasites. Phys Rev Lett 106(20):208103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYonsei UniversityWonjuRepublic of Korea
  2. 2.Department of Biomedical Laboratory ScienceYonsei UniversityWonjuRepublic of Korea
  3. 3.Department of Biomedical Laboratory ScienceKorea Nazarene UniversityCheonan-SiRepublic of Korea

Personalised recommendations