Advertisement

Flow distribution uniformity in a comb-like microchannel network

  • Alan LugariniEmail author
  • Admilson T. Franco
  • Marcelo R. Errera
Research Paper
  • 87 Downloads

Abstract

A comb-like network has a single manifold duct, which ramifies to several branches, all subject to a pressure reservoir. Applications for such networks include vascular systems such as microchannel heatsinks, in which a working fluid needs to be fed to a great number of small volume elements. A configuration with constant branches of diameter and spacing produces a non-uniform flow distribution: the first branch receives a large fraction of the inlet mass flow rate and the subsequent branches receive smaller and smaller fractions. To overcome this problem, two alternative configurations are proposed: variable diameters and variable spacings along the branches. The construction rules providing flow uniformity for both configurations are analytically determined by the method of constructal design and further validated numerically. It is shown that, when the system performance is evaluated at the most critical element, instead of the traditional global fluid flow resistance, the new configurations perform significantly better than the one with constant diameter and spacing. The importance of these results is elucidated under the view of constructal theory.

Keywords

Constructal design Flow access Microchannel network Vascularization Flow uniformity 

List of symbols

A

Network area (= Lli) (m2)

C1

Constant (= 2νPo/π) (m2/s)

C2

Constant (= π2A3/2/(16Vf2)) (m− 3)

D

Diameter (m)

l

Branch spacing

L

Branch length

Mass flow rate (kg/s)

n

Number of branches

P

Pressure (Pa)

Po

Poiseuille number

R

Hydraulic resistance (= l/D4) (m− 3)

Re

Reynolds number (= 4/πρνD)

Sv

Svelteness, Eq. (1)

V

Volume (m3)

x

Mass fraction (= i/in)

y

Mass fraction density, Eq. (23)

Greek symbols

Γ

Network aspect ratio (= ∑li/L)

η

factor (= (2n − i)(i − 1)/(2n))

κ

Branch-to-manifold diameter ratio, Eq. (5)

λ

Normalized branch spacing (= l/L)

µ

Flow rate nonuniformity parameter, Eq. (15)

ν

Kinematic viscosity (m2/s)

ρ

Density (kg/m3)

Subscripts

0

Constant quantity

B

Branch

f

Fluid

i,j

Branch rank

in

Inlet

M

Manifold

opt

Optimum

out

Outlet

Superscripts

*

Non-dimensional quantity

Notes

Acknowledgements

We thank the Brazilian Agency of Coordination for the Improvement of Higher Education Personnel (CAPES) for support at PPGEM/UTFPR and at PPGERHA/UFPR. This research was partially supported by CAPES/COFECUB through the Grant 854/15 and Grant ANEEL/COPEL PD 2866-0470-2017.

References

  1. Bejan A (1997a) Constructal tree network for fluid flow between a finite-size volume and one source or sink. Rev Générale Therm 36:592–604.  https://doi.org/10.1016/S0035-3159(97)89986-2 CrossRefGoogle Scholar
  2. Bejan A (1997b) Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf 40:799–816.  https://doi.org/10.1016/0017-9310(96)00175-5 CrossRefzbMATHGoogle Scholar
  3. Bejan A (2015) Constructal law: optimization as design evolution. J Heat Transf 137:061003.  https://doi.org/10.1115/1.4029850 CrossRefGoogle Scholar
  4. Bejan A (2017) Evolution in thermodynamics. Appl Phys Rev 4:011305.  https://doi.org/10.1063/1.4978611 CrossRefGoogle Scholar
  5. Bejan A, Errera MR (2000) Convective trees of fluid channels for volumetric cooling. Int J Heat Mass Transf 43:3105–3118.  https://doi.org/10.1016/S0017-9310(99)00353-1 CrossRefzbMATHGoogle Scholar
  6. Bejan A, Errera MR (2015) Technology evolution, from the constructal law: heat transfer designs. Int J Energy Res 39:919–928.  https://doi.org/10.1002/er.3262 CrossRefGoogle Scholar
  7. Bejan A, Lorente S (2004) The constructal law and the thermodynamics of flow systems with configuration. Int J Heat Mass Transf 47:3203–3214.  https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.007 CrossRefzbMATHGoogle Scholar
  8. Bejan A, Lorente S (2008) Design with constructal theory. Wiley, HobokenCrossRefGoogle Scholar
  9. Buchegger W, Wagner C, Lendl B et al (2011) A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluid Nanofluid 10:889–897.  https://doi.org/10.1007/s10404-010-0722-0 CrossRefGoogle Scholar
  10. Cetkin E (2015) Constructal vascular structures with high-conductivity inserts for self-cooling. J Heat Transf 137:111901.  https://doi.org/10.1115/1.4030906 CrossRefGoogle Scholar
  11. Chen Y, Zhang C, Shi M, Yang Y (2009) Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink. AIChE J.  https://doi.org/10.1002/aic.12135 CrossRefGoogle Scholar
  12. Chen P-C, Wu M-H, Wang Y-N (2014) Microchannel geometry design for rapid and uniform reagent distribution. Microfluid Nanofluid 17:275–285.  https://doi.org/10.1007/s10404-013-1312-8 CrossRefGoogle Scholar
  13. Cho K-H, Chang W-P, Kim M-H (2011) A numerical and experimental study to evaluate performance of vascularized cooling plates. Int J Heat Fluid Flow 32:1186–1198.  https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2011.09.006 CrossRefGoogle Scholar
  14. Clemente MR, Oliveira Panão MR (2018) Introducing flow architecture in the design and optimization of mold inserts cooling systems. Int J Therm Sci 127:288–293.  https://doi.org/10.1016/j.ijthermalsci.2018.01.035 CrossRefGoogle Scholar
  15. COMSOL Multiphysics® (2018) v. 5.3. www.comsol.com. COMSOL AB, StockholmGoogle Scholar
  16. Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922.  https://doi.org/10.1039/b502930a CrossRefGoogle Scholar
  17. Errera MR (2018) Constructal law in light of philosophy of science. Proc Rom Acad Ser A Spec Issue 19:111–117Google Scholar
  18. Feng H, Chen L, Xie Z, Sun F (2015) Constructal entropy generation rate minimization for X-shaped vascular networks. Int J Therm Sci 92:129–137.  https://doi.org/10.1016/j.ijthermalsci.2015.01.029 CrossRefGoogle Scholar
  19. Fritsch FN, Carlson RE (1980) Monotone piecewise cubic interpolation. SIAM J Numer Anal 17:238–246.  https://doi.org/10.1137/0717021 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hansen CJ, Wu W, Toohey KS et al (2009) Self-healing materials with interpenetrating microvascular networks. Adv Mater 21:4143–4147.  https://doi.org/10.1002/adma.200900588 CrossRefGoogle Scholar
  21. Hart RA, da Silva AK (2011) Experimental thermal–hydraulic evaluation of constructal microfluidic structures under fully constrained conditions. Int J Heat Mass Transf 54:3661–3671.  https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.063 CrossRefGoogle Scholar
  22. Hart RA, da Silva AK (2013) Self-optimizing, thermally adaptive microfluidic flow structures. Microfluid Nanofluid 14:121–132.  https://doi.org/10.1007/s10404-012-1030-7 CrossRefGoogle Scholar
  23. Heitor Reis A (2014) Use and validity of principles of extremum of entropy production in the study of complex systems. Ann Phys (N Y) 346:22–27.  https://doi.org/10.1016/j.aop.2014.03.013 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kwak Y, Pence D, Liburdy J, Narayanan V (2009) Gas–liquid flows in a microscale fractal-like branching flow network. Int J Heat Fluid Flow 30:868–876.  https://doi.org/10.1016/J.IJHEATFLUIDFLOW.2009.03.014 CrossRefGoogle Scholar
  25. Lasdon LS, Waren AD, Jain A, Ratner M (1978) Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans Math Softw 4:34–50.  https://doi.org/10.1145/355769.355773 CrossRefzbMATHGoogle Scholar
  26. Lee J, Kim Y, Lorente S, Bejan A (2013) Constructal design of a comb-like channel network for self-healing and self-cooling. Int J Heat Mass Transf 66:898–905.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.070 CrossRefGoogle Scholar
  27. Lorente S, Bejan A (2005) Svelteness, freedom to morph, and constructal multi-scale flow structures. Int J Therm Sci 44:1123–1130.  https://doi.org/10.1016/j.ijthermalsci.2005.08.011 CrossRefGoogle Scholar
  28. Lugarini A, Franco AT, Errera MR (2018) Design and performance evaluation of constructal microchannel network heatsinks. J Heat Transfer 140:052403.  https://doi.org/10.1115/1.4038559 CrossRefGoogle Scholar
  29. Maganti LS, Dhar P, Sundararajan T, Das SK (2016) Particle and thermohydraulic maldistribution of nanofluids in parallel microchannel systems. Microfluid Nanofluid 20:109.  https://doi.org/10.1007/s10404-016-1769-3 CrossRefGoogle Scholar
  30. Pan M, Zhang Y, Vafai K (2017) Velocity uniformity of microchannels in a laminated-sheet structure under parallel and series methods. Chem Eng Technol 40:1774–1783.  https://doi.org/10.1002/ceat.201700291 CrossRefGoogle Scholar
  31. Pence D (2003) Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks. Microscale Thermophys Eng 6:319–330.  https://doi.org/10.1080/10893950290098359 CrossRefGoogle Scholar
  32. Pence D (2010) The simplicity of fractal-like flow networks for effective heat and mass transport. Exp Therm Fluid Sci 34:474–486.  https://doi.org/10.1016/j.expthermflusci.2009.02.004 CrossRefGoogle Scholar
  33. Postiglione G, Alberini M, Leigh S et al (2017) Effect of 3D-printed microvascular network design on the self-healing behavior of cross-linked polymers. ACS Appl Mater Interfaces 9:14371–14378.  https://doi.org/10.1021/acsami.7b01830 CrossRefGoogle Scholar
  34. Rebrov EV, Schouten JC, de Croon MHJM (2011) Single-phase fluid flow distribution and heat transfer in microstructured reactors. Chem Eng Sci 66:1374–1393.  https://doi.org/10.1016/J.CES.2010.05.044 CrossRefGoogle Scholar
  35. Rocha LAO, Lorente S, Bejan A (2017) Constructal theory in heat transfer. In: Kulacki FA (ed) Handbook of thermal science and engineering. Springer International Publishing, Cham, pp 1–32Google Scholar
  36. Shui L, Huang B, Gao F, Rui H (2018) Experimental and numerical investigation on the flow and heat transfer characteristics in a tree-like branching microchannel. J Mech Sci Technol 32:937–946.  https://doi.org/10.1007/s12206-018-0144-y CrossRefGoogle Scholar
  37. Tong JCK, Sparrow EM, Abraham JP (2009) Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system. Appl Therm Eng 29:3552–3560.  https://doi.org/10.1016/j.applthermaleng.2009.06.010 CrossRefGoogle Scholar
  38. Toohey KS, Sottos NR, Lewis JA et al (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585.  https://doi.org/10.1038/nmat1934 CrossRefGoogle Scholar
  39. Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2:1–9.  https://doi.org/10.1088/1748-3182/2/1/P01 CrossRefGoogle Scholar
  40. White FM (2011) Viscous fluid flow, 3rd edn. Tata Mcgraw Hill, AhmedabadGoogle Scholar
  41. White SR, Sottos NR, Geubelle PH et al (2001) Autonomic healing of polymer composites. Nature 409:794–797.  https://doi.org/10.1038/35057232 CrossRefGoogle Scholar
  42. Williams H, Trask R, Weaver P, Bond I (2008) Minimum mass vascular networks in multifunctional materials. J R Soc Interface 5:55–65.  https://doi.org/10.1098/rsif.2007.1022 CrossRefGoogle Scholar
  43. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233.  https://doi.org/10.1039/b509386d CrossRefGoogle Scholar
  44. Zhou T, Liu T, Deng Y et al (2017) Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method. Microfluid Nanofluid 21:11.  https://doi.org/10.1007/s10404-016-1842-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center for Rheology and Non-Newtonian FluidsFederal University of Technology, ParanáCuritibaBrazil
  2. 2.Environmental Engineering DepartmentFederal University of ParanáCuritibaBrazil

Personalised recommendations