Advertisement

Gelatin-based microfluidics device with the feature sizes smaller than 100 µm for production of oil-in-water emulsions

  • Shaohua MaEmail author
Short Communication

Abstract

Hydrogel-based microfluidics offers the intrinsic hydrophilicity of the embossed microfluidic channels. The previous work on hydrogel-based microfluidics usually has limited access to small features. Here, we offer a solution to fabricate gelatin-based microfluidics device with the feature sizes smaller than 100 µm. The fabrication was straightforward, using gelatin and riboflavin solution, without requiring the chemical functionalization of gelatin towards gelatin methacrylate. The mechanical and thermal stability of gelatin was improved by exposing the gelatin–riboflavin mixture under blue light, which induced chemical crosslinking by photooxidation. The devices were stable enough to produce oil-in-water droplets and oil-in-oil-in-water double emulsions for demanded applications.

Notes

Acknowledgements

The work is funded by Shenzhen Municipal Development and Reform Commission, Shenzhen Engineering Laboratory for Precision Medicine and Healthcare, Grant number: SDRC [2015]1950. The work is also funded by the Scientific Research Start-Up Fund of Tsinghua-Berkeley Shenzhen Institute.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10404_2019_2203_MOESM1_ESM.mp4 (1.9 mb)
Supplementary material 1 (MP4 1995 KB)
10404_2019_2203_MOESM2_ESM.mp4 (192 kb)
Supplementary material 2 (MP4 191 KB)

References

  1. Abate AR, Krummel AT, Lee D, Marquez M, Holtze C, Weitz DA (2008) Lab Chip 8:2157CrossRefGoogle Scholar
  2. Bauer WAC, Fischlechner M, Abell C, Huck WTS (2010) Lab Chip 10:1814CrossRefGoogle Scholar
  3. Chen CH, Shah RK, Abate AR, Weitz DA (2009) Langmuir 25:4320CrossRefGoogle Scholar
  4. Chen Q, Feng Y, Zhang D, Zhang G, Fan Q, Sun S, Zhu D (2010) Adv Funct Mater 20:36CrossRefGoogle Scholar
  5. Chen MB, Srigunapalan S, Wheeler AR, Simmons CA (2013) Lab Chip 13:2591CrossRefGoogle Scholar
  6. Golden AP, Tien J (2007) Lab Chip 7:720CrossRefGoogle Scholar
  7. Ma S, Natoli M, Liu X, Neubauer MP, Watt FM, Fery A, Huck WTS (2013) J Mater Chem B 1:5128CrossRefGoogle Scholar
  8. Ma S, Sherwood JM, Huck WTS, Balabani S (2014) Lab Chip 14:3611CrossRefGoogle Scholar
  9. McCall AS, Kraft S, Edelhauser HF, Kidder GW, Lundquist RR, Bradshaw HE, Dedeic Z, Dionne MJ, Clement EM, Conrad GW (2009) Invest Ophthalmol Visual Sci 51:129CrossRefGoogle Scholar
  10. Nie J, Gao Q, Wang Y, Zeng J, Zhao H, Sun Y, Shen J, Ramezani H, Fu Z, Liu Z, Xiang M, Fu J, Zhao P, Chen W, He Y (2018) Small 1802368:1802368CrossRefGoogle Scholar
  11. Paguirigan A, Beebe DJ (2006) Lab Chip 6:407CrossRefGoogle Scholar
  12. Raghavan SR, Douglas JF (2012) Soft Matter 8:8539CrossRefGoogle Scholar
  13. Siqueira-Moura MP, Franceschi-Messant S, Blanzat M, Ré MI, Perez E, Rico-Lattes I, Lattes A, Tedesco AC (2013) J Colloid Interface Sci 401:155CrossRefGoogle Scholar
  14. Sun Y, Jin L, Wang H, Yang Y (2011) Soft Matter 7:348CrossRefGoogle Scholar
  15. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Angew Chem Int Ed 49:5846CrossRefGoogle Scholar
  16. Xia Y, Whitesides GM (1998) Annu Rev Mater Sci 28:153CrossRefGoogle Scholar
  17. Yu H, Huang Q (2012) J Agric Food Chem 60:5373CrossRefGoogle Scholar
  18. Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Angew Chem Int Ed 44:5083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shenzhen Engineering Laboratory for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen InstituteTsinghua UniversityShenzhenPeople’s Republic of China

Personalised recommendations