Advertisement

Cell encapsulation modes in a flow-focusing microchannel: effects of shell fluid viscosity

  • Mohammad Nooranidoost
  • Majid Haghshenas
  • Metin Muradoglu
  • Ranganathan KumarEmail author
Research Paper

Abstract

Flow-focusing microencapsulation is an important process to protect the cells in biomedical applications. This article characterizes different cell encapsulation modes and presents the droplet volume distribution, frequency of encapsulation and cell population in terms of inner and outer fluid capillary ratios and viscosity of the shell fluid. The desired mode of at least one cell in a droplet is determined for different capillary number ranges and each viscosity ratios. The droplet volume and frequency of droplet generation are normalized for a combined non-dimensional parameter to classify different patterns of compound droplet formation which helps us to improve single-cell encapsulation process. With increase in orifice radius, the droplet volume increases, and the success rate of cell encapsulation increases. Above a critical radius, the encapsulation mode transitions from one cell to multiple cells captured inside the droplet.

Keywords

Two-phase flow Front-tracking method Flow-focusing Microfluidics 

Notes

Acknowledgements

The authors would like to acknowledge University of Central Florida Advanced Research Computing Center (Stokes Cluster) for providing required computational sources.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abate AR, Chen CH, Agresti JJ, Weitz DA (2009) Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9(18):2628CrossRefGoogle Scholar
  2. Abate AR, Rotem A, Thiele J, Weitz DA (2011) Efficient encapsulation with plug-triggered drop formation. Phys Rev E 84(3):031502CrossRefGoogle Scholar
  3. Akbari S, Pirbodaghi T (2014) Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach. Microfluid Nanofluid 16(4):773CrossRefGoogle Scholar
  4. Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18(5):240CrossRefGoogle Scholar
  5. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions usingflow focusing in microchannels. Appl Phys Lett 82(3):364CrossRefGoogle Scholar
  6. Carrier O, Funfschilling D, Li HZ (2014) Effect of the fluid injection configuration on droplet size in a microfluidic T junction. Phys Rev E 89(1):013003CrossRefGoogle Scholar
  7. Castillo-Orozco E, Kar A, Kumar R (2017) Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension. Sci Rep 7(1):5144CrossRefGoogle Scholar
  8. Che Z, Wong TN, Nguyen NT (2017) A simple method for the formation of water-in-oil-in-water (W/O/W) double emulsions. Microfluid Nanofluid 21(1):8CrossRefGoogle Scholar
  9. Chen Y, Wu L, Zhang C (2013) Emulsion droplet formation in coflowing liquid streams. Phys Rev E 87(1):013002CrossRefGoogle Scholar
  10. Chen Y, Wu L, Zhang L (2015) Dynamic behaviors of double emulsion formation in a flow-focusing device. Int J Heat Mass Transf 82:42CrossRefGoogle Scholar
  11. Chong D, Liu X, Ma H, Huang G, Han YL, Cui X, Yan J, Xu F (2015) Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 19(5):1071CrossRefGoogle Scholar
  12. Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46(47):8970CrossRefGoogle Scholar
  13. Collins DJ, Alan T, Helmerson K, Neild A (2013) Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab Chip 13(16):3225CrossRefGoogle Scholar
  14. Collins DJ, Neild A, Liu AQ, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15(17):3439CrossRefGoogle Scholar
  15. Cruz-Mazo F, Montanero J, Gañán-Calvo A (2016) Monosized dripping mode of axisymmetric flow focusing. Phys Rev E 94(5):053122CrossRefGoogle Scholar
  16. Derzsi L, Kasprzyk M, Plog JP, Garstecki P (2013) Flow focusing with viscoelastic liquids. Phys Fluids 25(9):092001CrossRefGoogle Scholar
  17. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038CrossRefGoogle Scholar
  18. Edd JF, Di Carlo D, Humphry KJ, Köster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262CrossRefGoogle Scholar
  19. Fornell A, Garofalo F, Nilsson J, Bruus H, Tenje M (2018) Intra-droplet acoustic particle focusing: simulations and experimental observations. Microfluid Nanofluid 22(7):75CrossRefGoogle Scholar
  20. Glawdel T, Elbuken C, Ren CL (2012) Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Phys Rev E 85(1):016323CrossRefGoogle Scholar
  21. Gupta A, Sbragaglia M, Belardinelli D, Sugiyama K (2016) Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows. Phys Rev E 94(6):063302CrossRefGoogle Scholar
  22. Haghshenas M, Wilson JA, Kumar R (2017) Algebraic coupled level set-volume of fluid method for surface tension dominant two-phase flows. Int J Multiph Flow 90:13MathSciNetCrossRefGoogle Scholar
  23. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201zbMATHCrossRefGoogle Scholar
  24. Homma S, Moriguchi K, Kim T, Koga J (2014) Computations of compound droplet formation from a co-axial dual nozzle by a three-fluid front-tracking method. J Chem Eng Jpn 47(2):195CrossRefGoogle Scholar
  25. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem commun 28(12):1218–1220CrossRefGoogle Scholar
  26. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733CrossRefGoogle Scholar
  27. Izbassarov D, Muradoglu M (2016) Effects of viscoelasticity on drop impact and spreading on a solid surface. Phys Rev Fluids 1(2):023302CrossRefGoogle Scholar
  28. Lao KL, Wang JH, Lee GB (2009) A microfluidic platform for formation of double-emulsion droplets. Microfluid Nanofluid 7(5):709CrossRefGoogle Scholar
  29. Liu H, Zhang Y (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys 106(3):034906MathSciNetCrossRefGoogle Scholar
  30. Liu W, Kim HJ, Lucchetta EM, Du W, Ismagilov RF (2009) Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip 9(15):2153CrossRefGoogle Scholar
  31. Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703CrossRefGoogle Scholar
  32. Migliaresi C, Motta A, Tasoglu S, Gurkan UA, Guven S, Demirci U (2014) Organ printing and cell encapsulation. In: Scaffolds for tissue engineering: biological design, materials, and fabrication. Pan Stanford Publishing, pp 491–527Google Scholar
  33. Moon S, Ceyhan E, Gurkan UA, Demirci U (2011) Statistical modeling of single target cell encapsulation. PLoS One 6(7):e21580CrossRefGoogle Scholar
  34. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Controlled Release 132(2):76CrossRefGoogle Scholar
  35. Nabavi SA, Vladisavljević GT, Gu S, Ekanem EE (2015) Double emulsion production in glass capillary microfluidic device: parametric investigation of droplet generation behaviour. Chem Eng Sci 130:183CrossRefGoogle Scholar
  36. Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5(5):585CrossRefGoogle Scholar
  37. Nooranidoost M, Izbassarov D, Muradoglu M (2016) Droplet formation in a flow focusing configuration: effects of viscoelasticity. Phys Fluids 28(12):123102CrossRefGoogle Scholar
  38. Nooranidoost M, Haghshenas M, Muradoglu M, Kumar R (2017) Cell-encapsulating droplet formation in a flow-focusing configuration. Bull Am Phys Soc 62:426–427Google Scholar
  39. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Computat Phys 79(1):12MathSciNetzbMATHCrossRefGoogle Scholar
  40. Seo M, Paquet C, Nie Z, Xu S, Kumacheva E (2007) Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3(8):986CrossRefGoogle Scholar
  41. Tan SH, Nguyen NT (2011) Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations. Phys Rev E 84(3):036317CrossRefGoogle Scholar
  42. Tasoglu S, Kaynak G, Szeri AJ, Demirci U, Muradoglu M (2010) Impact of a compound droplet on a flat surface: a model for single cell epitaxy. Phys Fluids 22(8):082103CrossRefGoogle Scholar
  43. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2):708MathSciNetzbMATHCrossRefGoogle Scholar
  44. Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25zbMATHCrossRefGoogle Scholar
  45. Utada A, Lorenceau E, Link D, Kaplan P, Stone H, Weitz D (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537CrossRefGoogle Scholar
  46. Vladisavljević G, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13(1):151CrossRefGoogle Scholar
  47. Wehking JD, Chew L, Kumar R (2013) Droplet deformation and manipulation in an electrified microfluidic channel. Appl Phys Lett 103(5):054101CrossRefGoogle Scholar
  48. Wilson J, Wehking JD, Kumar R (2013) Uniform alumina microspheres from temperature induced forming in a microfluidic T-junction. Appl Phys Lett 103(20):203115CrossRefGoogle Scholar
  49. Xu J, Li S, Tan J, Luo G (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluid 5(6):711CrossRefGoogle Scholar
  50. Zhao CX (2013) Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 65(11):1420CrossRefGoogle Scholar
  51. Zhou C, Yue P, Feng JJ (2006) Formation of simple and compound drops in microfluidic devices. Phys Fluids 18(9):092105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical, Materials and Aerospace EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Mechanical EngineeringKoç UniversityIstanbulTurkey

Personalised recommendations