Advertisement

Multi-level separation of particles using acoustic radiation force and hydraulic force in a microfluidic chip

  • Guojun Liu
  • Fang He
  • Xinbo Li
  • Hong ZhaoEmail author
  • Yanyan Zhang
  • Zhiqiang Li
  • Zhigang Yang
Research Paper
  • 152 Downloads

Abstract

Combined with acoustic separation and hydraulic separation technology, a microfluidic chip, which can achieve multi-level particle separation, is proposed in this work. The chip uses the sheath flow on both sides to align the mixed particles in the set area (near the side of the channel) of the separation channel. And then, the mixed particles successively pass through the acoustic surface wave and hydraulic action area, which are generated by modulating interdigital transducers and adjusting the flow ratio, respectively, and finally realize multiple particle separation under the acoustic radiation and hydraulic force. The corresponding separation experiments were carried out using polystyrene (PS) microparticles with diameters of 1 µm, 5 µm, and 10 µm, respectively. Moreover, we explored the influence of the peak-to-peak voltage (Vpp) and flow ratio on the PS microparticles separation effect, and the separation effect is optimal at the flowrate in the main channel is 4 mm/s, Vpp = 25 V, A1 = 0.2, A2 = 0.5. Under these conditions, the separation purity of 1 µm, 5 µm, and 10 µm PS microparticles are 95.60%, 91.67%, 93.75%, respectively, and their separation rates are 96.67%, 89.19%, and 96.77%, respectively. The combined multi-level separation chip has the advantages of simple structure, high separation accuracy, high separation efficiency, and the ability to sort multiple particles, which can be applied to chemical analysis, cell sorting, biomedicine.

Keywords

Microfluidic chip Multi-level separation Acoustic radiation force Hydraulic force Combined separation Surface acoustic wave 

Notes

Acknowledgements

Financial support from the Jilin Province Natural Science Foundation Projects (No. 20170101136JC), the National Natural Science Foundation Projects (Nos. 51375207; 51875234), and the Jilin Provincial Department of Education Project (JJKH20190140KJ) are gratefully acknowledged.

References

  1. Ai Y, Sanders CK, Marrone BL (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126–9134CrossRefGoogle Scholar
  2. Chang CB, Huang WX, Lee KH, Sung HJ (2014) Optical separation of ellipsoidal particles in a uniform flow. Phys Fluids 26:062001CrossRefGoogle Scholar
  3. Chono K, Shimizu N, Matsui Y, Kondoh J, Shiokawa S (2004) Development of novel atomization system based on SAW streaming. Jpn J Appl Phys 43:2987–2991CrossRefGoogle Scholar
  4. Collins DJ, Alan T, Neild A (2014) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14:1595–1603CrossRefGoogle Scholar
  5. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686CrossRefGoogle Scholar
  6. Destgeer G, Lee KH, Jung JH, Alazzam A, Sung HJ (2013) Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13:4210–4216CrossRefGoogle Scholar
  7. Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14:4665–4672CrossRefGoogle Scholar
  8. Destgeer G, Ha BH, Park J, Jung JH, Alazzam A, Sung HJ (2015) Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. Anal Chem 87:4627–4632CrossRefGoogle Scholar
  9. Destgeer G, Alazzam A, Sung HJ (2016) High frequency travelling surface acoustic waves for microparticle separation. J Mech Sci Technol 30:3945–3952CrossRefGoogle Scholar
  10. Devendran C, Gunasekara NR, Collins DJ, Neild A (2016) Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Adv 6:5856–5864CrossRefGoogle Scholar
  11. Dincer C, Kling A, Chatelle C, Armbrecht L, Kieninger J, Weber W, Urban GA (2016) Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique. Analyst 141:6073–6079CrossRefGoogle Scholar
  12. Ding X, Wang L, Huang TJ (2012) High-efficiency blood cell separation using standing surface acoustic waves. In: Proceedings of the 16th international conference on miniaturized systems for chemistry and life sciences. MicroTAS, pp 539–541Google Scholar
  13. Ding XY, Peng ZL, Lin SCS, Geri M, Li SX, Li P, Chen YC, Dao M, Suresh S, Huang TJ (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci 111:12992–12997CrossRefGoogle Scholar
  14. Duffy DC, Mcdonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  15. Fouet M, Mader MA, Iraïn S, Yanha Z, Naillon A, Cargou S, Gue AM, Joseph P (2016) Filter-less submicron hydrodynamic size sorting. Lab Chip 16:720–733CrossRefGoogle Scholar
  16. Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J (2012) Sheathless size-based acoustic particle separation. Sensors 12:905–922CrossRefGoogle Scholar
  17. Hung LH, Wang HL, Yang RJ (2016) A portable sample concentrator on paper-based microfluidic devices. Microfluid Nanofluid 20:80CrossRefGoogle Scholar
  18. Isiksacan Z, Erel O, Elbuken C (2016) A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate. Lab Chip 16:4682–4690CrossRefGoogle Scholar
  19. Jo MC, Guldiken R (2012) Active density-based separation using standing surface acoustic waves. Sens Actuators A Phys 187:22–28CrossRefGoogle Scholar
  20. Li SX, Ding XY, Mao ZM, Chen YC, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ (2015) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15:331–338CrossRefGoogle Scholar
  21. Li SX, Ma F, Bachman H, Cameron CE, Zeng XQ, Huang TJ (2017) Acoustofluidic bacteria separation. J Micromech Microeng 27:015031CrossRefGoogle Scholar
  22. Ma ZC, Collins DJ, Guo JH, Ai Y (2016) Mechanical properties based particle separation via traveling surface acoustic wave. Anal Chem 88:11844–11851CrossRefGoogle Scholar
  23. Ma ZC, Collins DJ, Ai Y (2017) Single-actuator bandpass microparticle filtration via traveling surface acoustic waves. Colloid Interface Sci Commun 16:6–9CrossRefGoogle Scholar
  24. Mashaghi S, Abbaspourrad A, Weitz DA, van Oijen AM (2016) Droplet microfluidics: a tool for biology, chemistry and nanotechnology. TrAC Trends Anal Chem 82:118–125CrossRefGoogle Scholar
  25. McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14:4139–4158CrossRefGoogle Scholar
  26. Nam J, Lim H, Kim C, Kang JY, Shin S (2012) Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6:024120CrossRefGoogle Scholar
  27. Naseer SM, Manbachi A, Samandari M, Walch P, Gao Y, Zhang YS, Davoudi F, Wang W, Abrinia K, Cooper JM (2017) Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication 9:015020CrossRefGoogle Scholar
  28. Ng JW, Collins DJ, Devendran C, Ai Y, Neild A (2016) Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves. Microfluid Nanofluid 20:151CrossRefGoogle Scholar
  29. Nivedita N, Garg N, Lee AP, Papautsky I (2017) A high throughput microfluidic platform for size-selective enrichment of cell populations in tissue and blood samples. Analyst 142:2558–2569CrossRefGoogle Scholar
  30. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659CrossRefGoogle Scholar
  31. Sehgal P, Kirby BJ (2017) Separation of 300 and 100 nm particles in Fabry–Perot acoustofluidic resonators. Anal Chem 89:12192–12200CrossRefGoogle Scholar
  32. Skowronek V, Rambach RW, Franke T (2015) Surface acoustic wave controlled integrated band-pass filter. Microfluid Nanofluid 19:335–341CrossRefGoogle Scholar
  33. Soliman AM, Eldosoky MA, Taha TE (2017) The separation of blood components using standing surface acoustic waves (SSAWs) microfluidic devices: analysis and simulation. Bioengineering 4:4020028CrossRefGoogle Scholar
  34. Song PY, Hu R, Tng DJH, Yong KT (2014) Moving towards individualized medicine with microfluidics technology. Rsc Adv 4:11499–11511CrossRefGoogle Scholar
  35. Sun MR, Agarwal P, Zhao ST, Zhao Y, Lu XB, He XM (2016) Continuous on-chip cell separation based on conductivity-induced dielectrophoresis with 3D self-assembled ionic liquid electrodes. Anal Chem 88:8264–8271CrossRefGoogle Scholar
  36. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49:5846–5868CrossRefGoogle Scholar
  37. Wang SD, Sung KJ, Lin XXNN, Burns MA (2017) Bead mediated separation of microparticles in droplets. PLoS One 12:e0173479CrossRefGoogle Scholar
  38. Wu J, Yan QF, Xuan SH, Gong XL (2017) Size-selective separation of magnetic nanospheres in a microfluidic channel. Microfluid Nanofluid 21:47CrossRefGoogle Scholar
  39. Xu WC, Hou ZN, Liu ZH, Wu ZG (2016) Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation. Microfluid Nanofluid 20:128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanical and Aerospace EngineeringJilin UniversityChangchunChina
  2. 2.College of Communication EngineeringJilin UniversityChangchunChina
  3. 3.Scientific Research CenterChina-Japan Union Hospital of Jilin UniversityChangchunChina

Personalised recommendations