Advertisement

Fully resolved simulation of single-particle dynamics in a microcavity

  • Maoqiang Jiang
  • Shizhi Qian
  • Zhaohui Liu
Research Paper
  • 127 Downloads
Part of the following topical collections:
  1. 2018 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Beijing, China

Abstract

Fluid flow laden with a single finite size neutrally buoyant particle over a confined microcavity adjacent to a main straight microchannel is numerically simulated by a fully resolved simulation method. This method is based on coupled immersed boundary–lattice Boltzmann method, which can directly resolve the fluid flow and the interactions between fluid and particles without any empirical models. The evolution of the fluid microvortex and the motions of the particle, such as trapping, orbiting, and rotating, in a confined microcavity are investigated as a function of Reynolds number ranging from 5 to 250. The results reveal that the topology structure of the microvortex changes from local apex ear, to globally crescentic and then triangle as Reynolds number increases. Three phases for particle stable and unstable entrapping behavior and four particle-trapping modes are observed and identified. The particle-trapping pathway varies from outer to inner, invariable, inner to outer, and inner to escape corresponding to different Reynolds numbers. The mechanisms for this phenomenon are revealed by a new improved competing model between outward centrifugal force and inward inertial lift force. Finally, the orbiting and rotating motion of the particle is quantitatively analyzed for the first time.

Graphical abstract

Particle orbiting and rotating behavior in the microcavity and the distribution of pressure coefficient on the particle surface at different particle positions.

Keywords

Particle trapping Microvortex Lattice Boltzmann method Immersed boundary method 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 51876075, 51876076) and the Foundation of State Key Laboratory of Coal Combustion (Grant no. FSKLCCA1802).

Supplementary material

10404_2018_2166_MOESM1_ESM.avi (1.4 mb)
Supplementary material 1 (AVI 1431 KB)

References

  1. Aidun CK, Clausen JR (2009) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472.  https://doi.org/10.1146/annurev-fluid-121108-145519 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Al-Faqheri W, Thio THG, Qasaimeh MA, Dietzel A, Madou M, Al-Halhouli A (2017) Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid Nanofluid 21:102.  https://doi.org/10.1007/s10404-017-1933-4 CrossRefGoogle Scholar
  3. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidic physics. Lab Chip 14:2739–2761.  https://doi.org/10.1039/C4LC00128A CrossRefGoogle Scholar
  4. Asmolov ES, Dubov AL, Nizkaya TV, Harting J, Vinogradova OI (2018) Inertial focusing of finite-size particles in microchannels. J Fluid Mech 840:613–630.  https://doi.org/10.1017/jfm.2018.95 MathSciNetCrossRefGoogle Scholar
  5. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914.  https://doi.org/10.1039/B807107A CrossRefGoogle Scholar
  6. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364.  https://doi.org/10.1146/annurev.fluid.30.1.329 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18:031704.  https://doi.org/10.1063/1.2176587 CrossRefGoogle Scholar
  8. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046.  https://doi.org/10.1039/B912547G CrossRefGoogle Scholar
  9. Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102:094503CrossRefGoogle Scholar
  10. Fan L-L, He X-K, Han Y, Du L, Zhao L, Zhe J (2014) Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures. Biomicrofluidics 8:024108.  https://doi.org/10.1063/1.4870253 CrossRefGoogle Scholar
  11. Fishler R, Mulligan MK, Sznitman J (2013) Mapping low-Reynolds-number microcavity flows using microfluidic screening devices. Microfluid Nanofluid 15:491–500.  https://doi.org/10.1007/s10404-013-1166-0 CrossRefGoogle Scholar
  12. Guo Z, Zheng C, Shi B (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65:046308CrossRefGoogle Scholar
  13. Haddadi H, Di Carlo D (2017) Inertial flow of a dilute suspension over cavities in a microchannel. J Fluid Mech 811:436–467.  https://doi.org/10.1017/jfm.2016.709 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Haddadi H, Naghsh-Nilchi H, Di Carlo D (2018) Separation of cancer cells using vortical microfluidic flows. Biomicrofluidics 12:014112.  https://doi.org/10.1063/1.5009037 CrossRefGoogle Scholar
  15. Hood K, Lee S, Roper M (2015) Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J Fluid Mech 765:452–479.  https://doi.org/10.1017/jfm.2014.739 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:022206.  https://doi.org/10.1063/1.3576780 CrossRefGoogle Scholar
  17. Jiang M, Liu Z (2018) A boundary thickening-based direct forcing immersed boundary method for fully resolved simulation of particle-laden flows. arXiv preprint: http://arxiv.org/abs/180609403
  18. Jiang D, Sun D, Xiang N, Chen K, Yi H, Ni Z (2013) Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion–contraction microchannel. Biomicrofluidics 7:034113.  https://doi.org/10.1063/1.4812456 CrossRefGoogle Scholar
  19. Jiang D, Tang W, Xiang N, Ni Z (2016) Numerical simulation of particle focusing in a symmetrical serpentine microchannel. RSC Adv 6:57647–57657.  https://doi.org/10.1039/C6RA08374A CrossRefGoogle Scholar
  20. Khojah R, Stoutamore R, Di Carlo D (2017) Size-tunable microvortex capture of rare cells. Lab Chip 17:2542–2549.  https://doi.org/10.1039/C7LC00355B CrossRefGoogle Scholar
  21. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980.  https://doi.org/10.1039/B908271A CrossRefGoogle Scholar
  22. Lashgari I, Ardekani MN, Banerjee I, Russom A, Brandt L (2017) Inertial migration of spherical and oblate particles in straight ducts. J Fluid Mech 819:540–561.  https://doi.org/10.1017/jfm.2017.189 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Lim DSW, Shelby JP, Kuo JS, Chiu DT (2003) Dynamic formation of ring-shaped patterns of colloidal particles in microfluidic systems. Appl Phys Lett 83:1145–1147.  https://doi.org/10.1063/1.1600532 CrossRefGoogle Scholar
  24. Liu C, Hu G, Jiang X, Sun J (2015) Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab Chip 15:1168–1177.  https://doi.org/10.1039/C4LC01216J CrossRefGoogle Scholar
  25. Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11:2827–2834.  https://doi.org/10.1039/C1LC20330D CrossRefGoogle Scholar
  26. Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628.  https://doi.org/10.1146/annurev.bioeng.8.061505.095758 CrossRefGoogle Scholar
  27. Martel JM, Toner M (2014) Inertial focusing in microfluidics. Ann Rev Biomed Eng 16:371–396.  https://doi.org/10.1146/annurev-bioeng-121813-120704 CrossRefGoogle Scholar
  28. Maxey M (2017) Simulation methods for particulate flows and concentrated suspensions. Annu Rev Fluid Mech 49:171–193.  https://doi.org/10.1146/annurev-fluid-122414-034408 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37:239–261.  https://doi.org/10.1146/annurev.fluid.37.061903.175743 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Moffatt HK (2006) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18:1–18.  https://doi.org/10.1017/S0022112064000015 CrossRefzbMATHGoogle Scholar
  31. Nakagawa N, Yabu T, Otomo R, Kase A, Makino M, Itano T, Sugihara-Seki M (2015) Inertial migration of a spherical particle in laminar square channel flows from low to high Reynolds numbers. J Fluid Mech 779:776–793.  https://doi.org/10.1017/jfm.2015.456 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Nguyen NQ, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708.  https://doi.org/10.1103/PhysRevE.66.046708 CrossRefGoogle Scholar
  33. Oliver DR (1962) Influence of particle rotation on radial migration in the Poiseuille flow of suspensions. Nature 194:1269.  https://doi.org/10.1038/1941269b0 CrossRefGoogle Scholar
  34. Park J-S, Jung H-I (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal Chem 81:8280–8288.  https://doi.org/10.1021/ac9005765 CrossRefGoogle Scholar
  35. Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209.  https://doi.org/10.1038/189209a0 CrossRefGoogle Scholar
  36. Shelby JP, Chiu DT (2004) Controlled rotation of biological micro- and nano-particles in microvortices. Lab Chip 4:168–170.  https://doi.org/10.1039/B402479F CrossRefGoogle Scholar
  37. Shelby JP, Lim DSW, Kuo JS, Chiu DT (2003) High radial acceleration in microvortices. Nature 425:38.  https://doi.org/10.1038/425038a CrossRefGoogle Scholar
  38. Shen F, Xiao P, Liu Z (2015) Microparticle image velocimetry (µPIV) study of microcavity flow at low Reynolds number. Microfluid Nanofluid 19:403–417.  https://doi.org/10.1007/s10404-015-1575-3 CrossRefGoogle Scholar
  39. Shen F, Xu M, Wang Z, Liu Z (2017) Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics. Appl Phys Express 10:097301CrossRefGoogle Scholar
  40. Shen F, Xu M, Zhou B, Wang Z, Liu Z (2018a) Effects of geometry factors on microvortices evolution in confined square microcavities. Microfluid Nanofluid 22:36.  https://doi.org/10.1007/s10404-018-2056-2 CrossRefGoogle Scholar
  41. Shen F, Xue S, Zhou B, Xu M, Xiao P, Liu Z (2018b) Evolution of single-particle recirculating orbits within a hydrodynamic microvortex. J Micromech Microeng 28:085018CrossRefGoogle Scholar
  42. Sollier E et al (2014) Size-selective collection of circulating tumor cells using vortex technology. Lab Chip 14:63–77.  https://doi.org/10.1039/C3LC50689D CrossRefGoogle Scholar
  43. Sun D-K, Wang Y, Dong A-P, Sun B-D (2016) A three-dimensional quantitative study on the hydrodynamic focusing of particles with the immersed boundary-Lattice Boltzmann method. Int J Heat Mass Transfer 94:306–315.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.012 CrossRefGoogle Scholar
  44. Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209:448–476MathSciNetCrossRefGoogle Scholar
  45. Zhang J, Li M, Li W, Alici G (2013) Investigation of trapping process in “Centrifuge-on-a-chip”. In: Advanced intelligent mechatronics (AIM), 2013 IEEE/ASME International Conference on IEEE, pp 1266–1271Google Scholar
  46. Zhang J, Li W, Li M, Alici G, Nguyen NT (2014) Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluid Nanofluid 17:305–316CrossRefGoogle Scholar
  47. Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Ebrahimi Warkiani M, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16:10–34.  https://doi.org/10.1039/C5LC01159K CrossRefGoogle Scholar
  48. Zhou J, Kasper S, Papautsky I (2013) Enhanced size-dependent trapping of particles using microvortices. Microfluid Nanofluid 15:611–623.  https://doi.org/10.1007/s10404-013-1176-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Combustion, School of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Mechanical and Aerospace EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations