Picking up and placing a liquid marble using dielectrophoresis

  • Chin Hong OoiEmail author
  • Jing Jin
  • Anh V. Nguyen
  • Geoffrey M. Evans
  • Nam-Trung Nguyen
Research Paper
Part of the following topical collections:
  1. 2018 International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip, Beijing, China


A liquid marble is a droplet coated with hydrophobic powder. The porous and hydrophobic coating prevents physical contact between the liquid and its surroundings without compromising gas exchange. As such, the liquid marble is an excellent platform for culturing cells. With the promising biomedical applications of the liquid marble, numerous studies have been conducted to improve its handling using magnetism, which limits the liquid marble coating to hydrophobised ferromagnetic materials. In this paper, we propose a novel, simple and cheap method of liquid marble manipulation such as pick and place based on the well-known dielectrophoresis force. Liquid marbles of various volumes were picked up using an electrode with a high voltage bias, moved to a different location and placed intact. This method provides reliable handling to a host of existing non-ferromagnetic liquid marbles without the need to engineer their coatings. Furthermore, this method enables the automation of the liquid marble handling process. This paper provides an empirical relationship to link the pickup force to the experimental parameters.



We acknowledge the Australian Research Council for the discovery Grant DP170100277.

Supplementary material

10404_2018_2163_MOESM1_ESM.docx (396 kb)
Supplementary material 1 (DOCX 395 KB)
10404_2018_2163_MOESM2_ESM.avi (5.1 mb)
Supplementary material 2 (AVI 5260 KB)
10404_2018_2163_MOESM3_ESM.avi (5.8 mb)
Supplementary material 3 (AVI 5894 KB)
10404_2018_2163_MOESM4_ESM.avi (8.1 mb)
Supplementary material 4 (AVI 8274 KB)
10404_2018_2163_MOESM5_ESM.avi (6.6 mb)
Supplementary material 5 (AVI 6780 KB)
10404_2018_2163_MOESM6_ESM.avi (5.4 mb)
Supplementary material 6 (AVI 5534 KB)
10404_2018_2163_MOESM7_ESM.avi (8.4 mb)
Supplementary material 7 (AVI 8589 KB)


  1. Arbatan T, Al-Abboodi A, Sarvi F, Chan PP, Shen W (2012) Tumor inside a pearl drop. Adv Healthc Mater 1:467–469CrossRefGoogle Scholar
  2. Aussillous P, Quere D (2001) Liquid marbles Nature 411:924–927CrossRefGoogle Scholar
  3. Aussillous P, Quere D (2006) Properties of liquid marbles. Proc. R Soc A 462:973–999CrossRefGoogle Scholar
  4. Bhosale PS, Panchagnula MV, Stretz HA (2008) Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl Phys Lett 93:034109CrossRefGoogle Scholar
  5. Biganzoli F, Fantoni G (2008) A self-centering electrostatic microgripper. J Manufacturing Syst 27:136–144CrossRefGoogle Scholar
  6. Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16:266–271CrossRefGoogle Scholar
  7. Bormashenko E (2012) New insights into liquid marbles. Soft Matter 8:11018–11021CrossRefGoogle Scholar
  8. Bormashenko E (2017) Liquid marbles, elastic nonstick droplets: from minireactors to Self-propulsion Langmuir 33:663–669CrossRefGoogle Scholar
  9. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on. superhydrophobic surfaces Langmuir 24:12119–12122CrossRefGoogle Scholar
  10. Bormashenko E, Pogreb R, Balter R, Gendelman O, Aurbach D (2012a) Composite non-stick droplets and their actuation with electric field. Appl Phys Lett 100:151601CrossRefGoogle Scholar
  11. Bormashenko E, Pogreb R, Stein T, Whyman G, Schiffer M, Aurbach D (2012b) Electrically deformable liquid marbles. J Adhes Sci Technol 25:1371–1377CrossRefGoogle Scholar
  12. Bormashenko E, Bormashenko Y, Grynyov R, Aharoni H, Whyman G, Binks BP (2015) Self-propulsion of liquid marbles: leidenfrost-like levitation driven by Marangoni flow. J Phys Chem C 119:9910–9915CrossRefGoogle Scholar
  13. Chen Z et al (2017) Liquid marble coalescence and triggered microreaction driven by acoustic levitation Langmuir 33:6232–6239CrossRefGoogle Scholar
  14. Dorvee JR, Derfus AM, Bhatia SN, Sailor MJ (2004) Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat Mater 3:896–899CrossRefGoogle Scholar
  15. Dupin D, Armes SP, Fujii S (2009) Stimulus-responsive liquid marbles. J Am Chem Soc 131:5386–5387CrossRefGoogle Scholar
  16. Fantoni G, Biganzoli F (2004) Design of a novel electrostatic gripper J Manuf Sci Prod 6:163-80Google Scholar
  17. Fujii S, Suzaki M, Armes SP, Dupin D, Hamasaki S, Aono K, Nakamura Y (2011) Liquid marbles prepared from pH-responsive sterically stabilized Latex Particles Langmuir 27:8067–8074CrossRefGoogle Scholar
  18. Han X, Lee HK, Lim WC, Lee YH, Phan-Quang GC, Phang IY, Ling XY (2016) Spinning liquid marble and its dual applications as microcentrifuge and miniature localized viscometer ACS. Appl Mater Interfaces 8:23941–23946CrossRefGoogle Scholar
  19. Hesselbach J, Buttgenbach S, Wrege J, Butefisch S, Graf C (2001) Centering electrostatic microgripper and magazines for microassembly tasks. Microrobitics and microassembly III, vol 4568, SPIE, Boston, MA, USA, pp 270–277Google Scholar
  20. Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Edit 55:11183–11187CrossRefGoogle Scholar
  21. Khaw MK, Ooi CH, Mohd-Yasin F, Vadivelu R, John JS, Nguyen N-T (2016) Digital microfluidics with a magnetically actuated floating liquid marble Lab. on a Chip 16:2211–2218CrossRefGoogle Scholar
  22. Khaw MK, Ooi CH, Mohd-Yasin F, Nguyen AV, Evans GM, Nguyen N-T (2017) Dynamic behaviour of a magnetically actuated floating liquid marble. Microfluid Nanofluid 21:110CrossRefGoogle Scholar
  23. Lin X, Ma W, Wu H, Cao S, Huang L, Chen L, Takahara A (2016) Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles. Chem Commun 52:1895–1898CrossRefGoogle Scholar
  24. Liu Z, Fu X, Binks BP, Shum HC (2017) Coalescence of electrically charged liquid marbles. Soft Matter 13:119–124CrossRefGoogle Scholar
  25. Long Z, Shetty AM, Solomon MJ, Larson RG (2009) Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface Lab. on a Chip 9:1567–1575CrossRefGoogle Scholar
  26. McHale G, Newton MI (2011) Liquid marbles: principles and applications Soft Matter 7:5473–5481CrossRefGoogle Scholar
  27. McHale G, Newton MI (2015) Liquid marbles: topical context within soft matter and recent progress. Soft Matter 11:2530–2546CrossRefGoogle Scholar
  28. Mele E et al (2014) Biomimetic approach for liquid encapsulation with. nanofibrillar cloaks Langmuir 30:2896–2902CrossRefGoogle Scholar
  29. Miao YE, Lee HK, Chew WS, Phang IY, Liu T, Ling XY (2014) Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem Commun (Camb) 50:5923–5926CrossRefGoogle Scholar
  30. Nakai K, Fujii S, Nakamura Y, Yusa S-i (2013) Ultraviolet-light-responsive Liquid. Marbles Chem Lett 42:586–588CrossRefGoogle Scholar
  31. Newton MI, Herbertson DL, Elliott SJ, Shirtcliffe NJ, McHale G (2007) Electrowetting of liquid marbles. J Phys D 40:20–24CrossRefGoogle Scholar
  32. Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly(methylsilsesquioxane Particles Langmuir 30:9071–9075CrossRefGoogle Scholar
  33. Oliveira NM, Reis RL, Mano JF (2017) The potential of liquid marbles for Biomedical applications: a critical review Adv Healthc Mater 6:1700192-(n/a)CrossRefGoogle Scholar
  34. Ooi CH, Nguyen N-T (2015) Manipulation of liquid marbles Microfluid Nanofluid 19:483–495CrossRefGoogle Scholar
  35. Ooi CH, Nguyen AV, Evans GM, Gendelman O, Bormashenko E, Nguyen N-T (2015a) A floating self-propelling liquid marble containing aqueous ethanol solutions. RSC Adv 5:101006–101012CrossRefGoogle Scholar
  36. Ooi CH, Vadivelu RK, St John J, Dao DV, Nguyen N-T (2015b) Deformation of a floating liquid marble. Soft Matter 11:4576–4583CrossRefGoogle Scholar
  37. Ooi CH, Bormashenko E, Nguyen AV, Evans GM, Dao DV, Nguyen N-T (2016a) Evaporation of ethanol–water binary mixture sessile liquid marbles Langmuir 32:6097–6104CrossRefGoogle Scholar
  38. Ooi CH, Nguyen AV, Evans GM, Dao DV, Nguyen NT (2016b) Measuring the coefficient of friction of a small floating liquid. Marble Sci Rep 6:38346CrossRefGoogle Scholar
  39. Ooi CH, Plackowski C, Nguyen AV, Vadivelu RK, John JAS, Dao DV, Nguyen N-T (2016c) Floating mechanism of a small liquid marble. Sci Rep 6:21777CrossRefGoogle Scholar
  40. Paven M, Mayama H, Sekido T, Butt H-J, Nakamura Y, Fujii S (2016) Liquid marbles: light-driven delivery and release of materials using liquid marbles. Adv Funct Mater 26:19 /2:3372–3372Google Scholar
  41. Sarvi F et al (2015) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4:77–86CrossRefGoogle Scholar
  42. Tian J, Fu N, Chen XD, Shen W (2013) Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B 106:187–190CrossRefGoogle Scholar
  43. Ueno K, Hamasaki S, Wanless EJ, Nakamura Y, Fujii S (2014) Microcapsules fabricated from liquid marbles stabilized with latex particles Langmuir 30:3051–3059CrossRefGoogle Scholar
  44. Vadivelu RK et al (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083CrossRefGoogle Scholar
  45. Wang X, Wang X-B, Gascoyne PRC (1997) General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J Electrostat 39:277–295CrossRefGoogle Scholar
  46. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a “precise”. Miniature Reactor Adv Mater 22:4814–4818Google Scholar
  47. Zang D, Chen Z, Zhang Y, Lin K, Geng X, Binks BP (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9:5067CrossRefGoogle Scholar
  48. Zang D, Li J, Chen Z, Zhai Z, Geng X, Binks BP (2015) Switchable Opening and closing of a liquid marble via ultrasonic levitation Langmuir 31:11502–11507CrossRefGoogle Scholar
  49. Zhang L, Cha D, Wang P (2012) Remotely controllable liquid marbles Adv Mater 24:4756–4760CrossRefGoogle Scholar
  50. Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4. Nanoparticles Adv Mater 22:707–710CrossRefGoogle Scholar
  51. Zhao Y, Xu ZG, Parhizkar M, Fang J, Wang XG, Lin T (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13:555–564CrossRefGoogle Scholar
  52. Zhu GP, Nguyen NT, Ramanujan RV, Huang XY (2011) Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field Langmuir 27:14834–14841CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queensland Micro-and Nanotechnology CentreGriffith UniversityNathanAustralia
  2. 2.School of Chemical EngineeringUniversity of QueenslandSt LuciaAustralia
  3. 3.Department of Chemical EngineeringUniversity of NewcastleCallaghanAustralia

Personalised recommendations