Skip to main content
Log in

Electrokinetics in nanochannels grafted with poly-zwitterionic brushes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we compute the electrokinetic transport in soft nanochannels grafted with poly-zwitterionic (PZI) brushes. The transport is induced by an external pressure gradient, which drives the ionic cloud (in the form of an electric double layer or EDL) at the brush surfaces to induce an electric field that drives an induced electroosmotic transport. We characterize the overall transport by quantifying this electric field, overall flow velocity, and the energy conversion associated with the development of the electric field and a streaming current. We specially focus on how the ability of the PZI to ionize and demonstrate a significant charge at both large and small pH can be efficiently maneuvered to develop a liquid transport, an electric field, and an electrokinetically induced power across a wide range of pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexander S (1977) Polymer adsorption on small spheres. A scaling approach. J Phys 38:977

    Article  Google Scholar 

  • Ali M, Schiedt B, Healy K, Neumann R, Ensinger W (2008) Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology 19:085713

    Article  Google Scholar 

  • Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130:16351

    Article  Google Scholar 

  • Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W (2009) A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3:603

    Article  Google Scholar 

  • Ali M, Schiedt B, Neumann R, Ensinger W (2010a) Biosensing with functionalized single asymmetric polymer nanochannels. Macromol Biosci 10:28

    Article  Google Scholar 

  • Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010b) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132:8338

    Article  Google Scholar 

  • Azzaroni O, Brown AA, Huck WTS (2006) UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew Chem Int Ed 118:1802

    Article  Google Scholar 

  • Baldessari F, Santiago JG (2008) Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interface Sci 325:526

    Article  Google Scholar 

  • Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716

    Article  Google Scholar 

  • Benson L, Yeh L-H, Chou T-H, Qian S (2013) Field effect regulation of donnan potential and electrokinetic flow in a functionalized soft nanochannel. Soft Matter 9:9767

    Article  Google Scholar 

  • Cao Q, You H (2016) Electroosmotic flow in mixed polymer brush-grafted nanochannels. Polymers 8:438

    Article  Google Scholar 

  • Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558

    Article  Google Scholar 

  • Chen G, Das S (2015a) Scaling laws and ionic current inversion in polyelectrolyte-grafted nanochannels. J Phys Chem B 119:12714

    Article  Google Scholar 

  • Chen G, Das S (2015b) Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. J Appl Phys 117:185304

    Article  Google Scholar 

  • Chen G, Das S (2015c) Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Adv 5:4493

    Article  Google Scholar 

  • Chen G, Das S (2015d) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hckel linearization. J Colloid Interface Sci 445:357

    Article  Google Scholar 

  • Chen G, Das S (2017a) Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes. Electrophoresis 38:720

    Article  Google Scholar 

  • Chen G, Das S (2017b) Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J Phys Chem B 121:3130

    Article  Google Scholar 

  • Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698

    Article  Google Scholar 

  • Chen M, Briscoe WH, Armes SP, Cohen H, Klein J (2011) Polyzwitterionic brushes: extreme lubrication by design. Eur Polym J 47:511

    Article  Google Scholar 

  • Chen G, Sachar HS, Das S (2018) Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. Soft Matter 14:5246

    Article  Google Scholar 

  • Cheng N, Brown AA, Azzaroni O, Huck WTS (2008) Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 41:6317

    Article  Google Scholar 

  • Daiguji H, Yang P, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315

    Article  Google Scholar 

  • Das S, Guha A, Mitra SK (2013) Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers. Anal Chim Acta 804:159

    Article  Google Scholar 

  • Das S, Chanda S, Eijkel JCT, Tas NR, Chakraborty S, Mitra SK (2014) Filling of charged cylindrical capillaries. Phys Rev E 90:043011

    Article  Google Scholar 

  • Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015) Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter 11:8550

    Article  Google Scholar 

  • de Gennes P-G (1976) Scaling theory of polymer adsorption. J Phys 37:1443

    Google Scholar 

  • de Gennes P-G (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069

    Article  Google Scholar 

  • de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vrös J, Vancso GJ (2013) Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl Mater Interface 5:1400

    Article  Google Scholar 

  • Fidale LC, Nikolajski M, Rudolph T, Dutz S, Schacher FH, Heinze T (2013) Hybrid Fe\(_3\)O\(_4\)@ amino cellulose nanoparticles in organic mediaheterogeneous ligands for atom transfer radical polymerizations. J Colloid Interface Sci 390:25

    Article  Google Scholar 

  • Gilles FM, Tagliazucchi M, Azzaroni O, Szleifer I (2016) Ionic conductance of polyelectrolyte-modified nanochannels: nanoconfinement effects on the coupled protonation equilibria of polyprotic brushes. J Phys Chem C 120:4789

    Article  Google Scholar 

  • Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16:8719

    Article  Google Scholar 

  • Guo X, Ballauff M (2001) Spherical polyelectrolyte brushes: comparison between annealed and quenched brushes. Phys Rev E 64:051406

    Article  Google Scholar 

  • Higaki Y, Kobayashi M, Murakami D, Takahara A (2016) Anti-fouling behavior of polymer brush immobilized surfaces. Polym J 48:325

    Article  Google Scholar 

  • Hoffmann M, Jusufi A, Schneider C, Ballauff M (2009) Surface potential of spherical polyelectrolyte brushes in the presence of trivalent counterions. J Colloid Interface Sci 338(566):566

    Article  Google Scholar 

  • Ilcikova M, Tkac J, Kasak P (2015) Switchable materials containing polyzwitterion moieties. Polymers 7:2344

    Article  Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288

    Article  Google Scholar 

  • Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4:4987

    Article  Google Scholar 

  • Li F, Jian Y, Chang L, Zhao G, Yang L (2016) Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel. Colloid Surf B 147:234

    Article  Google Scholar 

  • Li H, Chen G, Das S (2016) Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloid Surf B 147:180

    Article  Google Scholar 

  • Li F, Jian Y, Xie Z, Liu Y, Liu Q (2017) Transient alternating current electroosmotic flow of a jeffrey fluid through a polyelectrolyte-grafted nanochannel. RSC Adv 7:782

    Article  Google Scholar 

  • Lin J-Y, Lin C-Y, Hsu J-P, Tseng S (2016) Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient. Anal Chem 88:1176

    Article  Google Scholar 

  • Lowe AB, McCormick CL (2006) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications. In: ACS Symposium Series, American Chemical Society

  • Ma Y, Yeh L-H, Lin C-Y, Mei L, Qian S (2015) pH-regulated ionic conductance in a nanochannel with overlapped electric double layers. Anal Chem 87:4508

    Article  Google Scholar 

  • Milne Z, Yeh LH, Chou TH, Qian S (2014) Tunable donnan potential and electrokinetic flow in a biomimetic gated nanochannel with ph-regulated polyelectrolyte brushes. J Phys Chem C 118:19806

    Article  Google Scholar 

  • Milner ST (1991) Polymer brushes. Science 251:905

    Article  Google Scholar 

  • Monteil C, Bar N, Bee A, Villemin D (2016) An efficient recyclable magnetic material for the selective removal of organic pollutants. Beilstein J Nanotechnol 7:1447

    Article  Google Scholar 

  • Moya S, Azzaroni O, Farhan T, Osborne VL, Huck WTS (2005) Locking and unlocking of polyelectrolyte brushes: toward the ffabrication of chemically controlled nanoactuators. Angew Chem Int Ed 44:4578

    Article  Google Scholar 

  • Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380:1

    Article  Google Scholar 

  • Nguyen T, Xie Y, de Vreede LJ, van den Berg A, Eijkel JCT (2013) Highly enhanced energy conversion from the streaming current by polymer addition. Lab Chip 13:3210

    Article  Google Scholar 

  • Patwary J, Chen G, Das S (2015) Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluid Nanofluid 20:37

    Article  Google Scholar 

  • Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968

    Article  Google Scholar 

  • Saleh TA, Rachman IB, Ali SA (2017) Tailoring hydrophobic branch in polyzwitterionic resin for simultaneous capturing of Hg(II) and methylene blue with response surface optimization. Sci Rep 7:4573

    Article  Google Scholar 

  • ShamsiJazeyi H, Miller CA, Wong MS, Tour JM, Verduzco R, ShamsiJazeyi Hadi (2014) Polymer coated nanoparticles for enhanced oil recovery. J Appl Polym Sci 131:40576

    Article  Google Scholar 

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2015) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. https://doi.org/10.1016/j:addr.2015.09.012

    Article  Google Scholar 

  • Tagliazucchi M, Szleifer I (2012) Stimuli-responsive polymers grafted to nanopores and other nano-curved surfaces: structure, chemical equilibrium and transport. Soft Matt. 8:7292

    Article  Google Scholar 

  • Tagliazucchi M, Azzaroni O, Szleifer I (2010) Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. J Am Chem Soc 132:12404

    Article  Google Scholar 

  • Umehara S, Karhanek M, Davis RW, Pourmand N (2009) Label-free biosensing with functionalized nanopipette probes. Proc Natl Acad Sci 106:4611

    Article  Google Scholar 

  • Urena-Benavides EE, Lin EL, Foster EL, Xue Z, Ortiz MR, Fei Y, Larsen ES, Kmetz AA, Lyon BA, Moaseri E, Bielawski CW, Pennell KD, Ellison CJ, Johnston KP (2016) Low adsorption of magnetite nanoparticles with uniform polyelectrolyte coatings in concentrated brine on model silica and sandstone. Ind Eng Chem Res 55:1522

    Article  Google Scholar 

  • van der Heyden FHJ, Stein D, Dekker C (2005) Streaming currents in a single nanofluidic channel. Phys Rev Lett 95:116104

    Article  Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006a) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 7:2232

    Article  Google Scholar 

  • van der Heyden FHJ, Stein D, Besteman K, Lemay SG, Dekker C (2006b) Charge inversion at high ionic strength studied by streaming currents. Phys Rev Lett 96:224502

    Article  Google Scholar 

  • van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7:1022

    Article  Google Scholar 

  • Vilozny B, Wollenberg AL, Actis P, Hwang D, Singaram B, Pourmand N (2013) Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette. Nanoscale 5:9214

    Article  Google Scholar 

  • Wang X, Xu J, Li L, Wu S, Chen Q, Lu Y, Ballauff M, Guo X (2010) Synthesis of spherical polyelectrolyte brushes by thermocontrolled emulsion polymerization. Macromol Rapid Commun 31:1272

    Article  Google Scholar 

  • Xiao W, Lin J, Li M, Ma Y, Chen Y, Zhang C, Li D, Gu H (2012) Prolonged in vivo circulation time by zwitterionic modification of magnetite nanoparticles for blood pool contrast agents. Contrast Media Mol Imaging 7:320

    Article  Google Scholar 

  • Xue S, Yeh LH, Ma Y, Qian S (2014) Tunable streaming current in a pH-regulated nanochannel by a field effect transistor. J Phys Chem C 118:6090

    Article  Google Scholar 

  • Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying ph-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131:2070

    Article  Google Scholar 

  • Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9:2788

    Article  Google Scholar 

  • Yeh L-H, Zhang M, Hu N, Joo SW, Qian S, Hsu J-P (2012a) Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes. Anal Chem 84:9615

    Article  Google Scholar 

  • Yeh L-H, Zhang M, Hu N, Joo SW, Qian S, Hsu J-P (2012b) Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes. Nanoscale 4:5169

    Article  Google Scholar 

  • Zeng Z, Yeh L-H, Zhang M, Qian S (2015) Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes. Nanoscale 7:17020

    Article  Google Scholar 

  • Zhao Y, Chen Y, Xiong X, Sun X, Zhang Q, Gan Y, Zhang L, Zhang W (2017) Synthesis of magnetic zwitterionichydrophilic material for the selective enrichment of N-linked glycopeptides. J Chromatogr A 1482:23

    Article  Google Scholar 

  • Zhou C, Mei L, Su Y-S, Yeh L-H, Zhang X, Qian S (2016) Gated ion transport in a soft nanochannel with biomimetic polyelectrolyte brush layers. Sens Actuators B 229:305

    Article  Google Scholar 

  • Zhulina EB, Borisov OV (2011) Poisson–Boltzmann theory of pH-sensitive (annealing) polyelectrolyte brush. Langmuir 27:10615

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Patwary, J., Sachar, H.S. et al. Electrokinetics in nanochannels grafted with poly-zwitterionic brushes. Microfluid Nanofluid 22, 112 (2018). https://doi.org/10.1007/s10404-018-2133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2133-6

Navigation