Advertisement

Microfluidics and Nanofluidics

, 22:105 | Cite as

Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating

  • Imrich Gablech
  • Jakub Somer
  • Zdenka Fohlerová
  • Vojtěch Svatoš
  • Jan Pekárek
  • Stanislav Kurdík
  • Jianguo Feng
  • Peter Fecko
  • Pavel Podešva
  • Jaromír Hubálek
  • Pavel Neužil
Short Communication
  • 220 Downloads

Abstract

We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.

Notes

Acknowledgements

We acknowledge the support of CEITEC Nano Research Infrastructure (ID LM2015041, MEYS CR, 2016–2019), CEITEC Brno University of Technology, and Grant Agency of the Czech Republic under the contracts GA16-11140S. Authors I. Gablech, J. Somer, and J. Pekárek also acknowledge the foundation support FEKT/STI-J-17-4136. We would also like to acknowledge F. Urban for valuable discussion as well as providing access to the femtosecond laser, and J. Klempa for help with device fabrication.

References

  1. Balram KC et al (2016) The nanolithography toolbox. J Res Natl Inst Stand 121:464–475CrossRefGoogle Scholar
  2. Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26CrossRefGoogle Scholar
  3. Boer MJd et al (2000) Micromachining of buried micro channels in silicon. J Microelectromech Syst 9:94–103CrossRefGoogle Scholar
  4. Castro ER et al (2018) Determination of dynamic contact angles within microfluidic devices. Microfluid Nanofluidics 22:51CrossRefGoogle Scholar
  5. Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49:2280–2292CrossRefGoogle Scholar
  6. Fekete Z, Pongracz A, Furjes P, Battistig G (2012) Improved process flow for buried channel fabrication in silicon. Microsyst Technol 18:353–358CrossRefGoogle Scholar
  7. Feng J, Fohlerová Z, Liu X, Chang H, Neužil P (2018) Microfluidic device based on deep reactive ion etching process and its lag effect for single cell capture and extraction. Sens Actuators B Chem 269:288–292CrossRefGoogle Scholar
  8. Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932CrossRefGoogle Scholar
  9. Huang YG, Wu XD, Liu HW, Jiang HR (2017) Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser. J Micromech Microeng 27:065005.  https://doi.org/10.1088/1361-6439/aa68cb/meta CrossRefGoogle Scholar
  10. Ilic B, Czaplewski D, Zalalutdinov M, Schmidt B, Craighead HG (2002) Fabrication of flexible polymer tubes for micro and nanofluidic applications. J Vac Sci Technol B 20:2459–2465CrossRefGoogle Scholar
  11. Iliescu C, Jing J, Tay FEH, Miao JM, Sun TT (2005) Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution. J Coat Technol 198:314–318CrossRefGoogle Scholar
  12. Iliescu C, Taylor H, Avram M, Miao JM, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:16505–16505CrossRefGoogle Scholar
  13. Iliescu FS, Teo JCM, Vrtacnik D, Taylor H, Iliescu C (2017) Cell therapy using an array of ultrathin hollow microneedles. Microsyst Technol 24(7):2905–2912.  https://doi.org/10.1007/s00542-017-3631-2 CrossRefGoogle Scholar
  14. Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: Continuous-flow PCR on a chip. Science 280:1046–1048CrossRefGoogle Scholar
  15. Larmer F, Schilp A, Funk K, Offenberg M (1999) Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications. In: IEEE International MEMS '99 Conference, Orlando, FL, USA., pp 211–216.  https://doi.org/10.1109/MEMSYS.1999.746812
  16. Liu CN et al (2013) Compact 3D microfluidic channel structures embedded in glass fabricated by femtosecond laser direct writing. J Laser Micro Nanoen 8:170–174CrossRefGoogle Scholar
  17. Martynova L et al (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789CrossRefGoogle Scholar
  18. Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457CrossRefGoogle Scholar
  19. Ramchandani N, Heptulla RA (2012) New technologies for diabetes: a review of the present and the future. Int J Pediatr Endocrinol 2012:28–28CrossRefGoogle Scholar
  20. Soon JBW, Neuzil P, Fang C, Reboud J, Wong CC, Kao LT (2010) High throughtput melting curve analysis in monolythic silicon-based microfluidic device. In: microTAS 2010, Groningen, The Netherlands, pp 608–610Google Scholar
  21. Velten T, Schuck H, Haberer W, Bauerfeld F (2010) Investigations on reel-to-reel hot embossing. Int J Adv Manuf Tech 47:73–80CrossRefGoogle Scholar
  22. Walsh EJ et al (2017) Microfluidics with fluid walls. Nat Commun 8:816CrossRefGoogle Scholar
  23. Xia YY, Si J, Li ZY (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789CrossRefGoogle Scholar
  24. Zellner P, Renaghan L, Agah M (2009) CMOS-compatible three dimensional buried channel technology (3DBCT). In: Transducers 2009, Denver, CO, USA, pp 192–195.  https://doi.org/10.1109/SENSOR.2009.5285530

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Imrich Gablech
    • 1
    • 2
  • Jakub Somer
    • 1
    • 2
  • Zdenka Fohlerová
    • 1
    • 2
  • Vojtěch Svatoš
    • 1
    • 2
  • Jan Pekárek
    • 1
    • 2
  • Stanislav Kurdík
    • 2
  • Jianguo Feng
    • 3
  • Peter Fecko
    • 1
  • Pavel Podešva
    • 3
  • Jaromír Hubálek
    • 1
    • 2
  • Pavel Neužil
    • 3
  1. 1.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  2. 2.Department of Microelectronics, Faculty of Electrical Engineering and CommunicationBrno University of TechnologyBrnoCzech Republic
  3. 3.Northwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations