Advertisement

Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique

  • Xiaoyong Ku
  • Zongwei Zhang
  • Xiaolong Liu
  • Li Chen
  • Gang LiEmail author
Research Paper

Abstract

A method is proposed for rapid prototyping of glass microfluidic devices utilizing a commercial micromilling machine. In the proposed approach, micromilling is performed with the glass substrates immersed in cool water, which could efficiently remove debris and increase the life of milling tools. We also investigate the effects of spindle speed, feed rate, cutting depth, cooling mode, and tool type on finished channel geometries, bottom surface roughness, and burring along the channel sides. It was found that low cutting depths, high spindle speeds and low feed rate produce smoother channels. Several functional microfluidic devices were demonstrated with this rapid prototyping method. The results confirm that the proposed micromilling technique represents a viable solution for the rapid and economic fabrication of glass-based microfluidic chips. We believe that this method will greatly improve the accessibility of glass microfluidic devices to researchers.

Keywords

Microfabrication Rapid prototyping Micromilling Glass microfluidic device 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (nos. 61771078 and 61271161), the Chongqing Research Program of Basic Research and Frontier Technology (no. cstc2017jcyjB0182) and the Fundamental Research Funds for the Central Universities (no. 106112016CDJXZ238826).

Supplementary material

10404_2018_2104_MOESM1_ESM.doc (834 kb)
Supplementary material 1 (DOC 834 KB)

Supplementary material 2 (WMV 649 KB)

References

  1. Akashi T, Yoshimura Y (2006) Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask. J Micromech Microeng 16:1051CrossRefGoogle Scholar
  2. Allen PB, Chiu DT (2008) Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices. Anal Chem 80:7153–7157CrossRefGoogle Scholar
  3. Arif M, Rahman M, San WY (2011) Ultraprecision ductile mode machining of glass by micromilling process. J Manuf Process 13:50–59CrossRefGoogle Scholar
  4. Bifano TG, Dow T, Scattergood R (1991) Ductile-regime grinding: a new technology for machining brittle materials. J Eng Ind 113:184–189CrossRefGoogle Scholar
  5. Bu M, Melvin T, Ensell GJ, Wilkinson JS, Evans AG (2004) A new masking technology for deep glass etching and its microfluidic application. Sens Actuators A Phys 115:476–482CrossRefGoogle Scholar
  6. Bulushev E, Bessmeltsev V, Dostovalov A, Goloshevsky N, Wolf A (2016) High-speed and crack-free direct-writing of microchannels on glass by an IR femtosecond laser. Opt Laser Eng 79:39–47CrossRefGoogle Scholar
  7. Carugo D, Lee JY, Pora A, Browning RJ, Capretto L, Nastruzzi C, Stride E (2016) Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (µMi-REM) technique. Biomed Microdevices 18:4CrossRefGoogle Scholar
  8. Chen P-C, Pan C-W, Lee W-C, Li K-M (2014a) An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. Int J Adv Manuf Tech 71:1623–1630CrossRefGoogle Scholar
  9. Chen P-C, Pan C-W, Lee W-C, Li K-M (2014b) Optimization of micromilling microchannels on a polycarbonate substrate. Int J Precis Eng Man 15:149–154CrossRefGoogle Scholar
  10. Cheng J-Y, Yen M-H, Wei C-W, Chuang Y-C, Young T-H (2005) Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J Micromech Microeng 15:1147–1156CrossRefGoogle Scholar
  11. Coltro WKT, Piccin E, da Silva JAF, do Lago CL, Carrilho E (2007) A toner-mediated lithographic technology for rapid prototyping of glass microchannels. Lab Chip 7:931–934CrossRefGoogle Scholar
  12. de Santana PP et al (2013) Fabrication of glass microchannels by xurography for electrophoresis applications. Analyst 138:1660–1664CrossRefGoogle Scholar
  13. Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15:2364–2378CrossRefGoogle Scholar
  14. Huang C-Y, Kuo C-H, Hsiao W-T, Huang K-C, Tseng S-F, Chou C-P (2012) Glass biochip fabrication by laser micromachining and glass-molding process. J Mater Process Tech 212:633–639CrossRefGoogle Scholar
  15. Hupert ML, Guy WJ, Llopis SD, Shadpour H, Rani S, Nikitopoulos DE, Soper SA (2007) Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices. Microfluid Nanofluid 3:1–11CrossRefGoogle Scholar
  16. Hwang D, Choi T, Grigoropoulos C (2004) Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl Phys A Mater Sci Process 79:605–612CrossRefGoogle Scholar
  17. Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505CrossRefGoogle Scholar
  18. Ju J, Lim S, Seok J, Kim S-m (2015) A method to fabricate low-cost and large area vitreous carbon mold for glass molded microstructures. Int J Precis Eng Man 16:287–291CrossRefGoogle Scholar
  19. Lam P, Wynne KJ, Wnek GE (2002) Surface-tension-confined microfluidics. Langmuir 18:948–951CrossRefGoogle Scholar
  20. Lin C-H, Lee G-B, Lin Y-H, Chang G-L (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726CrossRefGoogle Scholar
  21. Neo WK, Kumar AS, Rahman M (2012) A review on the current research trends in ductile regime machining. Int J Adv Manuf Technol 63:465–480CrossRefGoogle Scholar
  22. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration and applications. Chem Rev 113:2550–2583CrossRefGoogle Scholar
  23. Nieto D, Delgado T, Flores-Arias MT (2014) Fabrication of microchannels on soda-lime glass substrates with a Nd: YVO 4 laser. Opt Laser Eng 63:11–18CrossRefGoogle Scholar
  24. Nieto D, Couceiro R, Aymerich M, Lopez-Lopez R, Abal M, Flores-Arias MT (2015) A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture. Colloids Surf B 134:363–369CrossRefGoogle Scholar
  25. Park J, Lee N-E, Lee J, Park J, Park H (2005) Deep dry etching of borosilicate glass using SF 6 and SF 6/Ar inductively coupled plasmas. Microelectron Eng 82:119–128CrossRefGoogle Scholar
  26. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Accounts Chem Res 46:2396–2406CrossRefGoogle Scholar
  27. Ren K, Chen Y, Wu H (2014) New materials for microfluidics in biology. Curr Opin Biotech 25:78–85CrossRefGoogle Scholar
  28. Rodriguez I, Spicar-Mihalic P, Kuyper CL, Fiorini GS, Chiu DT (2003) Rapid prototyping of glass microchannels. Anal Chim Acta 496:205–215CrossRefGoogle Scholar
  29. Stjernström M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38CrossRefGoogle Scholar
  30. Tseng S-F, Chen M-F, Hsiao W-T, Huang C-Y, Yang C-H, Chen Y-S (2014) Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies. Opt Laser Eng 57:58–63CrossRefGoogle Scholar
  31. Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB (2011) Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 11:1550–1555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System TechnologyChongqing UniversityChongqingChina

Personalised recommendations