Advertisement

Single-cell compressibility quantification for assessing metastatic potential of cancer cells through multi-frequency acoustophoresis

  • Han Wang
  • Zhongzheng Liu
  • Dong M. Shin
  • Zhuo G. Chen
  • Younghak Cho
  • Yong-Joe Kim
  • Arum Han
Short Communication

Abstract

Analyzing cancer cell compressibility with single-cell resolution is of high interest in understanding cancer metastasis as well as in other cell biology applications. Here, a multi-frequency acoustophoretic cell alignment technique to precisely control cell positions in 3D space was developed, and combined with our recently developed numerical acoustophoresis model, which allowed extracting the compressibility of cells with high accuracy. This technology was applied to measure the compressibility of different head and neck cancer (HNC) cell lines that have different metastatic potential. This method can be a simple, non-contact, accurate, and low-cost solution for studying cell biomechanics and utilizing such biomechanical properties in evaluating the metastatic potential of cancer cells.

Keywords

Cell compressibility Multi-frequency acoustophoresis Metastatic potential of cancer cells Acoustofluidics 

Notes

Acknowledgements

This work was supported by the National Science Foundation (NSF) Grant No. ECCS 1232251.

Supplementary material

10404_2018_2081_MOESM1_ESM.doc (4.4 mb)
Supplementary material 1 (DOC 4494 KB)
10404_2018_2081_MOESM2_ESM.mpeg (7.3 mb)
Supplementary material 2 (MPEG 8334 KB)
10404_2018_2081_MOESM3_ESM.mpeg (8.1 mb)
Supplementary material 3 (MPEG 7456 KB)
10404_2018_2081_MOESM4_ESM.mpeg (7.2 mb)
Supplementary material 4 (MPEG 7366 KB)
10404_2018_2081_MOESM5_ESM.mpeg (5.6 mb)
Supplementary material 5 (MPEG 5738 KB)
10404_2018_2081_MOESM6_ESM.mpeg (4.6 mb)
Supplementary material 6 (MPEG 4670 KB)

References

  1. Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF (2012) Microfluidics-based assessment of cell deformability. Anal Chem 84:6438–6443.  https://doi.org/10.1021/ac300264v CrossRefGoogle Scholar
  2. Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE (2000) Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277:93–99.  https://doi.org/10.1006/bbrc.2000.3636 CrossRefGoogle Scholar
  3. Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771CrossRefGoogle Scholar
  4. Augustsson P, Barnkob R, Grenvall C, Deierborg T, Brundin P, Bruus H, Laurell T (2010) Measuring the acoustophoretic contrast factor of living cells in microchannels. In: Proceedings of the 14 International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp 1337–1339Google Scholar
  5. Barnkob R, Augustsson P, Magnusson C, Lilja H, Laurell T, Bruus H (2011) Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis. In: Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp 127–129Google Scholar
  6. Cross SE, Jin Y-S, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nano 2:780–783. http://www.nature.com/nnano/journal/v2/n12/suppinfo/nnano.2007.388_S1.html
  7. Ganatos P, Weinbaum S, Pfeffer R (2006) A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1 perpendicular motion. J Fluid Mech 99:739.  https://doi.org/10.1017/s0022112080000870 CrossRefzbMATHGoogle Scholar
  8. Gorkov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6:773Google Scholar
  9. Guck J et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698.  https://doi.org/10.1529/biophysj.104.045476 CrossRefGoogle Scholar
  10. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695.  https://doi.org/10.1016/j.cell.2006.11.001 CrossRefGoogle Scholar
  11. Hartono D, Liu Y, Tan PL, Then XYS, Yung L-YL, Lim K-M (2011) On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11:4072–4080.  https://doi.org/10.1039/C1LC20687G CrossRefGoogle Scholar
  12. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22.  https://doi.org/10.1016/S0021-9290(99)00175-X CrossRefGoogle Scholar
  13. Hou HW, Bhagat AAS, Lin Chong AG, Mao P, Wei Tan KS, Han J, Lim CT (2010) Deformability based cell margination-A simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613CrossRefGoogle Scholar
  14. Hur SC, Henderson-MacLennan NK, McCabe ERB, Di Carlo D (2011) Deformability-based cell classification and enrichment using inertial microfluidics. LabChip 11:912–920Google Scholar
  15. Kang S et al (2010) p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. J Clin Invest 120:1165–1177.  https://doi.org/10.1172/JCI40582 CrossRefGoogle Scholar
  16. Kim W, Han AA (2010) Micro-aspirator chip using vacuum expanded microchannels for high-throughput mechanical characterization of biological cells. In: The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, pp 253–255Google Scholar
  17. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506.  https://doi.org/10.1039/b601326k CrossRefGoogle Scholar
  18. Lee GYH, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25:111–118.  https://doi.org/10.1016/j.tibtech.2007.01.005 CrossRefGoogle Scholar
  19. Leporatti S, Vergara D, Zacheo A, Vergaro V, Maruccio G, Cingolani R, Rinaldi R (2009) Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy. Nanotechnology 20:055103. (Epub 052009 Jan 055109)CrossRefGoogle Scholar
  20. Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613.  https://doi.org/10.1016/j.bbrc.2008.07.078 CrossRefGoogle Scholar
  21. Liu Z, Han A, Kim Y-J (2012) Two-dimensional numerical analyses of acoustophoresis phenomena in microfluidic channel with microparticle-suspended, viscous moving fluid medium. ASME.  https://doi.org/10.1115/imece2012-89912 Google Scholar
  22. Liu Z, Wang H, Han A, Kim Y-J (2013) Numerical modeling for analyzing microfluidic acoustophoretic motion of cells and particles with application to identification of vibro-acoustic properties. Proc Meet Acous 19:045015.  https://doi.org/10.1121/1.4799390 CrossRefGoogle Scholar
  23. Liu Z, Kim Y-J, Wang H, Han A (2016) Effects of fluid medium flow and spatial temperature variation on acoustophoretic motion of microparticles in microfluidic channels. J Acous Soc Am 139:332–349.  https://doi.org/10.1121/1.4939737 CrossRefGoogle Scholar
  24. Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458CrossRefGoogle Scholar
  25. Nilsson A, Petersson F, Jönssonb H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135CrossRefGoogle Scholar
  26. Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC (2017) Quantitative deformability cytometry: rapid, calibrated measurements of cell mechanical properties. Biophys J 113:1574–1584.  https://doi.org/10.1016/j.bpj.2017.06.073 CrossRefGoogle Scholar
  27. Osterheld M-C, Liette C, Anca M (2005) Image cytometry: an aid for cytological diagnosis of pleural effusions. Diagn Cytopathol 32:173–176.  https://doi.org/10.1002/dc.20205 CrossRefGoogle Scholar
  28. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69:1728–1732.  https://doi.org/10.1158/0008-5472.can-08-4073 CrossRefGoogle Scholar
  29. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438.  https://doi.org/10.1016/j.actbio.2007.04.002 MathSciNetCrossRefGoogle Scholar
  30. Tsai CHD, Sakuma S, Arai F, Kaneko M (2014) A new dimensionless index for evaluating cell stiffness-based deformability in microchannel. IEEE Trans Biomed Eng 61:1187–1195.  https://doi.org/10.1109/TBME.2013.2296624 CrossRefGoogle Scholar
  31. Tse HTK et al (2013) Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med 5:212ra163.  https://doi.org/10.1126/scitranslmed.3006559 CrossRefGoogle Scholar
  32. Wang H et al (2014) Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment. Lab Chip 14:947–956.  https://doi.org/10.1039/C3LC51032H CrossRefGoogle Scholar
  33. Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models Nat Rev Cancer 5:591–602. http://www.nature.com/nrc/journal/v5/n8/suppinfo/nrc1670_S1.html

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Han Wang
    • 1
  • Zhongzheng Liu
    • 2
  • Dong M. Shin
    • 3
  • Zhuo G. Chen
    • 3
  • Younghak Cho
    • 4
  • Yong-Joe Kim
    • 2
  • Arum Han
    • 5
    • 6
  1. 1.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of Hematology and Medical OncologyEmory University School of MedicineAtlantaUSA
  4. 4.Department of Mechanical System Design EngineeringSeoul National University of Science and TechnologySeoulRepublic of Korea
  5. 5.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  6. 6.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations