Acoustofluidic separation: impact of microfluidic system design and of sample properties

Research Paper
  • 226 Downloads

Abstract

We describe the results of a numerical study about the separation of fluid-suspended microsamples (as microbeads and cells) by acoustophoresis. A microfluidic channel with rectangular cross section is considered, and we investigate the impact on particle separation of many different parameters, dividing them in two groups: sample’s intrinsic factors (own properties of the sample) and extrinsic factors (related to the microfluidic system design and operation). Differently from what is usually done, we include in our study the impact of the initial sample position, which always has a certain variability in real experiments, and we introduce several new parameters allowing to assess system performance and to optimize the microchip separation efficiency. The obtained results show the importance of two design parameters that are generally overlooked: the channel width and the offset between the channel border and the input of the target samples in the microchannel. Additionally, the analysis method we describe and the new parameters we introduce to study the system can be beneficially used in almost any study of acoustophoretic-based separation system.

Keywords

Acoustofluidics Particles separation Acoustic standing waves 

References

  1. Antfolk M, Antfolk C, Lilja H, Laurell T, Augustsson P (2015a) A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells. Lab Chip 15(9):2102–2109.  https://doi.org/10.1039/c5lc00078e CrossRefGoogle Scholar
  2. Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T (2015b) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87(18):9322–9328.  https://doi.org/10.1021/acs.analchem.5b02023 CrossRefGoogle Scholar
  3. Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84(18):7954–7962.  https://doi.org/10.1021/ac301723s CrossRefGoogle Scholar
  4. Barnkob R, Augustsson P, Laurell T, Bruus H (2010) Measuring the local pressure amplitude in microchannel acoustophoresis. Lab Chip 10(5):563–570.  https://doi.org/10.1039/b920376a CrossRefGoogle Scholar
  5. Brenker J, Collins D, Phan HV, Alan T, Neild A (2016) On-chip droplet production regimes using surface acoustic waves. Lab Chip 16:1675–1683.  https://doi.org/10.1039/C5LC01341K CrossRefGoogle Scholar
  6. Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  7. Bruus H, Dual J, Hawkes J, Hill M, Laurell T, Nilsson J, Radel S, Sadhal S, Wiklund M (2011) Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11(21):3579–3580.  https://doi.org/10.1039/c1lc90058g CrossRefGoogle Scholar
  8. Bucio TD, Khokhar AZ, Lacava C, Stankovic S, Mashanovich GZ, Petropoulos P, Gardes FY (2017) Material and optical properties of low-temperature NH3-free PECVD SiN x layers for photonic applications. J Phys D Appl Phys 50(2):025106.  https://doi.org/10.1088/1361-6463/50/2/025106 CrossRefGoogle Scholar
  9. Bykkoak S, zer MB, etin B (2014) Numerical modeling of ultrasonic particle manipulation for microfluidic applications. Microfluid Nanofluid 17(6):1025–1037.  https://doi.org/10.1007/s10404-014-1398-7 CrossRefGoogle Scholar
  10. Cheung YN, Nguyen NT, Wong TN (2014) Droplet manipulation in a microfluidic chamber with acoustic radiation pressure and acoustic streaming. Soft Matter 10(40):8122–8132.  https://doi.org/10.1039/c4sm01453g CrossRefGoogle Scholar
  11. Collins DJ, Neild A, Ai Y (2016) Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab Chip 16:471–479.  https://doi.org/10.1039/C5LC01335F CrossRefGoogle Scholar
  12. de Souza N (2011) Single-cell methods. Nat Methods 9(1):35–35.  https://doi.org/10.1038/nmeth.1819 MathSciNetCrossRefGoogle Scholar
  13. Devendran C, Gralinski I, Neild A (2014a) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluid 17(5):879–890.  https://doi.org/10.1007/s10404-014-1380-4 CrossRefGoogle Scholar
  14. Devendran C, Gralinski I, Neild A (2014b) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluidics 17(5):879–890.  https://doi.org/10.1007/s10404-014-1380-4 CrossRefGoogle Scholar
  15. Devendran C, Gunasekara NR, Collins DJ, Neild A (2016) Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Adv 6(7):5856–5864.  https://doi.org/10.1039/C5RA26965B CrossRefGoogle Scholar
  16. Ding X, Lin SCS, Lapsley MI, Li S, Guo X, Chan CY, Chiang IK, Wang L, McCoy JP, Huang TJ (2012a) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12(21):4228–4231.  https://doi.org/10.1039/c2lc40751e CrossRefGoogle Scholar
  17. Ding X, Shi J, Lin SCS, Yazdi S, Kiraly B, Huang TJ (2012b) Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab Chip 12(14):2491–2497.  https://doi.org/10.1039/c2lc21021e CrossRefGoogle Scholar
  18. Ding X, Peng Z, Lin SCS, Geri M, Li S, Li P, Chen Y, Dao M, Suresh S, Huang TJ (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci USA 111(36):12,992–12,997.  https://doi.org/10.1073/pnas.1413325111 CrossRefGoogle Scholar
  19. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647–704.  https://doi.org/10.1103/RevModPhys.83.647 CrossRefGoogle Scholar
  20. Garofalo F (2015) Analytical characterization of particle kinematics and transverse dispersion in free-flow acoustophoretic devices. Microfluid Nanofluid 18(3):367–382.  https://doi.org/10.1007/s10404-014-1452-5 CrossRefGoogle Scholar
  21. Goddard GR, Sanders CK, Martin JC, Kaduchak G, Graves SW (2007) Analytical performance of an ultrasonic particle focusing flow cytometer. Anal Chem 79(22):8740–8746.  https://doi.org/10.1021/ac071402t CrossRefGoogle Scholar
  22. Grenvall C, Magnusson C, Lilja H, Laurell T (2015) Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 87(11):5596–5604.  https://doi.org/10.1021/acs.analchem.5b00370 CrossRefGoogle Scholar
  23. Guo F, Li P, French JB, Mao Z, Zhao H, Li S, Nama N, Fick JR, Benkovic SJ, Huang TJ (2015) Controlling cell-cell interactions using surface acoustic waves. Proc Natl Acad Sci USA 112(1):43–48.  https://doi.org/10.1073/pnas.1422068112 CrossRefGoogle Scholar
  24. Hartono D, Liu Y, Tan PL, Then XYS, Yung LYL, Lim KM (2011) On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11(23):4072–4080.  https://doi.org/10.1039/c1lc20687g CrossRefGoogle Scholar
  25. Iranmanesh I, Ramachandraiah H, Russom A, Wiklund M (2015) On-chip ultrasonic sample preparation for cell based assays. RSC Adv 5(91):74,304–74,311.  https://doi.org/10.1039/C5RA16865A CrossRefGoogle Scholar
  26. Jakobsson O, Antfolk M, Laurell T (2014) Continuous flow two-dimensional acoustic orientation of nonspherical cells. Anal Chem 86(12):6111–6114.  https://doi.org/10.1021/ac5012602 CrossRefGoogle Scholar
  27. Jakobsson O, Oh SS, Antfolk M, Eisenstein M, Laurell T, Soh HT (2015) Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device. Anal Chem 87(16):8497–8502.  https://doi.org/10.1021/acs.analchem.5b01944 CrossRefGoogle Scholar
  28. Leibacher I, Reichert P, Dual J (2015) Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab Chip 15:2896–2905.  https://doi.org/10.1039/c5lc00083a CrossRefGoogle Scholar
  29. Li S, Guo F, Chen Y, Ding X, Li P, Wang L, Cameron CE, Huang TJ (2014) Standing surface acoustic wave based cell coculture. Anal Chem 86(19):9853–9859.  https://doi.org/10.1021/ac502453z CrossRefGoogle Scholar
  30. Minzioni P, Osellame R, Sada C, Zhao S, Omenetto F, Gylfason KB, Haraldsson T, Zhang Y, Ozcan A, Wax A, Mugele F, Schmidt H, Testa G, Bernini R, Guck J, Liberale C, Berg-Srensen K, Chen J, Pollnau M, Xiong S, Liu AQ, Shiue CC, Fan SK, Erickson D, Sinton D (2017) Roadmap for optofluidics. J Opt 19(9):093003.  https://doi.org/10.1088/2040-8986/aa783b CrossRefGoogle Scholar
  31. Mishra P, Hill M, Glynne-Jones P (2014) Deformation of red blood cells using acoustic radiation forces. Biomicrofluidics 8(3):034,109.  https://doi.org/10.1063/1.4882777 CrossRefGoogle Scholar
  32. Muller PB, Barnkob R, Jensen MJH, Bruus H (2012) A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12(22):4617–4627.  https://doi.org/10.1039/c2lc40612h CrossRefGoogle Scholar
  33. Nava G, Bragheri F, Yang T, Minzioni P, Osellame R, Cristiani I, Berg-Sørensen K (2015) All-silica microfluidic optical stretcher with acoustophoretic prefocusing. Microfluid Nanofluidics 19(4):837–844.  https://doi.org/10.1007/s10404-015-1609-x CrossRefGoogle Scholar
  34. Ohlin M, Iranmanesh I, Christakou AE, Wiklund M (2015) Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip. Lab Chip 15:3341–3349.  https://doi.org/10.1039/c5lc00490j CrossRefGoogle Scholar
  35. Owens CE, Shields CW, Cruz DF, Charbonneau P, López GP (2016) Highly parallel acoustic assembly of microparticles into well-ordered colloidal crystallites. Soft Matter 12(3):717–728.  https://doi.org/10.1039/c5sm02348c CrossRefGoogle Scholar
  36. Patil P, Madhuprasad M, Kumeria T, Losic D, Kurkuri M (2015) Isolation of circulating tumour cells by physical means in a microfluidic device: a review. RSC Adv 5(109):89,745–89,762.  https://doi.org/10.1039/C5RA16489C CrossRefGoogle Scholar
  37. Petersson F, Aberg L, Swärd-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123.  https://doi.org/10.1021/ac070444e CrossRefGoogle Scholar
  38. Rambach RW, Skowronek V, Franke T (2014) Localization and shaping of surface acoustic waves using PDMS posts: application for particle filtering and washing. RSC Adv 4(105):60,534–60,542.  https://doi.org/10.1039/C4RA13002B CrossRefGoogle Scholar
  39. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52.  https://doi.org/10.1007/s10404-013-1291-9 CrossRefGoogle Scholar
  40. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359.  https://doi.org/10.1039/b915113c CrossRefGoogle Scholar
  41. Tan MK, Yeo LY, Friend JR (2009) Rapid fluid flow and mixing induced in microchannels using surface acoustic waves. EPL Europhys Lett 87(4):47,003.  https://doi.org/10.1209/0295-5075/87/47003 CrossRefGoogle Scholar
  42. Yang AHJ, Soh HT (2012) Acoustophoretic sorting of viable mammalian cells in a microfluidic device. Anal Chem 84(24):10,756–10,762.  https://doi.org/10.1021/ac3026674 CrossRefGoogle Scholar
  43. Yang T, Bragheri F, Nava G, Chiodi I, Mondello C, Osellame R, Berg-Sørensen K, Cristiani I, Minzioni P (2016) A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells. Sci Rep 6(23):946.  https://doi.org/10.1038/srep23946 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingChina
  2. 2.Integrated Photonics Lab, Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly

Personalised recommendations