Skip to main content
Log in

Parallel trapping of single motile cells based on vibration-induced flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We propose an on-chip cell manipulation method for trapping single motile cells in parallel. The proposed method traps large (\(\gtrsim \,50\,\upmu \hbox {m}\)) motile cells in parallel, which is difficult to achieve by conventional cell manipulation methods based on optical, acoustic, electric, or magnetic forces. The trapping method exploits the flow induced by applying a vibration to a microfluidic chip with microstructures on its surface. By applying a rectilinear vibration to a chip with pairs of micropillars, we can trap single motile cells within the local flow generated between the micropillars. Using the proposed method, we trapped single Euglena gracilis cells (of size 50–100 \(\upmu \hbox {m}\)) in parallel. Moreover, we evaluate the trapping performance for various micropillar array design parameters and the controllability of the trapping-flow velocity by varying the amplitude of the vibration. The proposed method was then demonstrated in a motility evaluation of motile cells. The demonstration confirms the potential of the proposed method in realizing high-throughput motility evaluations of single motile cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708

    Article  Google Scholar 

  • Berg HC, Brown DA et al (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239(5374):500

    Article  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108(2):111

    Article  Google Scholar 

  • Chan V, Asada HH, Bashir R (2014) Utilization and control of bioactuators across multiple length scales. Lab Chip 14(4):653

    Article  Google Scholar 

  • Chen J, Kang Z, Kong SK, Ho HP (2015) Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt Lett 40(17):3926

    Article  Google Scholar 

  • Ding X, Lin SCS, Kiraly B, Yue H, Li S, Chiang IK, Shi J, Benkovic SJ, Huang TJ (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci 109(28):11105

    Article  Google Scholar 

  • Häder DP (1987) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch Microbiol 147(2):179

    Article  Google Scholar 

  • Häder DP, Liu SM (1990) Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation. Curr Microbiol 21(3):161

    Article  Google Scholar 

  • Hayakawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F (2014) A single cell extraction chip using vibration-induced whirling flow and a thermo-responsive gel pattern. Micromachines 5(3):681

    Article  Google Scholar 

  • Hayakawa T, Sakuma S, Arai F (2015) On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng 1:1

    Article  Google Scholar 

  • Hayakawa T, Akita Y, Arai F (2017) Parallel trapping of single motile cells using vibration-induced flow on microfluidic chip. In: The 30th IEEE international conference on micro electro mechanical systems (MEMS 2017) (Las Vegas, USA, 2017), pp 1281–1284

  • Holtsmark J, Johnsen I, Sikkeland T, Skavlem S (1954) Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J Acoust Soc Am 26(1):26

    Article  MathSciNet  Google Scholar 

  • Jekely G (2009) Evolution of phototaxis. Philos Trans R Soc Lond B Biol Sci 364(1531):2795

    Article  Google Scholar 

  • Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30(2):225

    Article  MATH  Google Scholar 

  • Lieu VH, House TA, Schwartz DT (2012) Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal Chem 84(4):1963

    Article  Google Scholar 

  • Lutz BR, Chen J, Schwartz DT (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78(15):5429

    Article  Google Scholar 

  • Macnab RM, Koshland D (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci 69(9):2509

    Article  Google Scholar 

  • Mishra A, Maltais T, Walter T, Wei A, Williams S, Wereley S (2016) Trapping and viability of swimming bacteria in an optoelectric trap. Lab Chip 16(6):1039

    Article  Google Scholar 

  • Nakahara K, Sakuma S, Hayakawa T, Arai F (2015) On-chip transportation and measurement of mechanical characteristics of oocytes in an open environment. Micromachines 6(5):648

    Article  Google Scholar 

  • Park SJ, Bae H, Kim J, Lim B, Park J, Park S (2010) Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion. Lab Chip 10(13):1706

    Article  Google Scholar 

  • Probst C, Grünberger A, Wiechert W, Kohlheyer D (2013) Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines 4(4):357

    Article  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635

    Article  Google Scholar 

  • Rasmussen MB, Oddershede LB, Siegumfeldt H (2008) Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl Environ Microbiol 74(8):2441

    Article  Google Scholar 

  • Saito M, Morita S (2006) Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity. J Appl Phys 100(11):114701

    Article  Google Scholar 

  • Saito M, Kitamura N, Terauchi M (2002) Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity. J Appl Phys 92(12):7581

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671

    Article  Google Scholar 

  • Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9(20):2890

    Article  Google Scholar 

  • Steager EB, Sakar MS, Kim DH, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21(3):035001

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796

    Article  Google Scholar 

  • Xin H, Xu R, Li B (2012) Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Sci Rep 2:818

    Article  Google Scholar 

  • Xin H, Xu R, Li B (2013a) Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser Photonics Rev 7(5):801

    Article  MathSciNet  Google Scholar 

  • Xin H, Li Y, Liu X, Li B (2013b) Escherichia coli-based biophotonic waveguides. Nano Lett 13(7):3408

    Article  Google Scholar 

  • Xin H, Liu Q, Li B (2014) Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Sci Rep 4:1

    Google Scholar 

Download references

Acknowledgements

We appreciate the support by Dr. Takuro Ito for teaching how to treat E. gracilis. We thank Kim Moravec, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This study was supported by JSPS KAKENHI Grant Numbers JP15H06268 and JP17K14623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hayakawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 4997 KB)

Supplementary material 2 (avi 4858 KB)

Supplementary material 3 (avi 3323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayakawa, T., Akita, Y. & Arai, F. Parallel trapping of single motile cells based on vibration-induced flow. Microfluid Nanofluid 22, 42 (2018). https://doi.org/10.1007/s10404-018-2062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2062-4

Keywords

Navigation