Advertisement

A facile strategy to integrate robust porous aluminum foil into microfluidic chip for sorting particles

  • Yi-Shan Zeng
  • Hua Fan
  • Bing Xu
  • Zhen Zhang
  • Fei-Fei Ren
  • Chen Zhou
  • Si-Zhu Wu
  • Yan-Lei HuEmail author
  • Wu-Lin Zhu
  • Ya-Hui Su
  • Jia-Ru Chu
  • Jia-Wen Li
  • Guo-Qiang Li
  • Dong WuEmail author
Research Paper

Abstract

High efficiency integration of functional microdevices into microchips is crucial for broad microfluidic applications. Here, a device-insertion and pressure sealing method was proposed to integrate robust porous aluminum foil into a microchannel for microchip functionalization which demonstrate the advantage of high efficient foil microfabrication and facile integration into the microfluidic chip. The porous aluminum foil with large area (10 × 10 mm2) was realized by one-step femtosecond laser perforating technique within few minutes and its pores size could be precisely controlled from 3 μm to millimeter scale by adjusting the laser pulse energy and pulse number. To verify the versatility and flexibility of this method, two kinds of different microchips were designed and fabricated. The vertical-sieve 3D microfluidic chip can separate silicon dioxide (SiO2) microspheres of two different sizes (20 and 5 μm), whereas the complex stacking multilayered structures (sandwich-like) microfluidic chip can be used to sort three different kinds of SiO2 particles (20, 10 and 5 μm) with ultrahigh separation efficiency of more than 92%. Furthermore, these robust filters can be reused via cleaning by backflow (mild clogging) or disassembling (heavy clogging).

Supplementary material

Supplementary material 1 (WMV 4723 kb)

10404_2017_2001_MOESM2_ESM.pdf (482 kb)
Supplementary material 2 (PDF 482 kb)

References

  1. Aran K, Sasso LA, Kamdar N, Zahn JD (2010) Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip 10:548–552. doi: 10.1039/B924816A CrossRefGoogle Scholar
  2. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20:101702. doi: 10.1063/1.2998844 CrossRefzbMATHGoogle Scholar
  3. Dholakia K, Čižmár T (2011) Shaping the future of manipulation. Nat Photonics 5:335–342. doi: 10.1038/nphoton.2011.80 CrossRefGoogle Scholar
  4. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6:1445–1449. doi: 10.1039/B605937F CrossRefGoogle Scholar
  5. Jain A, Posner JD (2008) Particle dispersion and separation resolution of pinched flow fractionation. Anal Chem 80:1641–1648. doi: 10.1021/ac0713813 CrossRefGoogle Scholar
  6. Jiang H-B, Zhang Y-L, Liu Y, Fu X-Y, Li Y-F, Liu Y-Q, Li C-H, Sun H-B (2016) Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. Laser Photonics Rev 10:441–450. doi: 10.1002/lpor.201500256 CrossRefGoogle Scholar
  7. Kang JH, Park J-K (2007) Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. Small 3:1784–1791. doi: 10.1002/smll.200700334 CrossRefGoogle Scholar
  8. Li G, Li J, Zhang C, Yanlei H, Li X, Chu J, Huang W, Dong W (2015a) Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity. Appl Mater Interfaces 7:383–390. doi: 10.1021/am506291f CrossRefGoogle Scholar
  9. Li G, Yang L, Peichao W, Zhang Z, Li J, Zhu W, Yanlei H, Dong W, Chu J (2015b) Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. J Mater Chem A 3:18675–18683. doi: 10.1039/C5TA05265C CrossRefGoogle Scholar
  10. Liu Y, Lim K-M (2011) Particle separation in microfluidics using a switching ultrasonic field. Lab Chip 11:3167–3173. doi: 10.1039/C1LC20481E CrossRefGoogle Scholar
  11. Mannion PT, Magee J, Coyne E, O’Connor GM, Glynn TJ (2004) The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci 233:275–287. doi: 10.1016/j.apsusc.2004.03.229 CrossRefGoogle Scholar
  12. McCloskey KE, Chalmers JJ, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75:6868–6874. doi: 10.1021/ac034315j CrossRefGoogle Scholar
  13. McGloin D (2006) Optical tweezers: 20 years on. Philos Trans A Math Phys Eng Sci 364:3521–3537. doi: 10.1098/rsta.2006.1891 CrossRefzbMATHGoogle Scholar
  14. Mohamed H, Turner JN, Caggana M (2007) Biochip for separating fetal cells from maternal circulation. J Chromatogr A 1162:187–192. doi: 10.1016/j.chroma.2007.06.025 CrossRefGoogle Scholar
  15. Moorthy J, Beebe DJ (2003) In situ fabricated porous filters for microsystems. Lab Chip 3:62–66. doi: 10.1039/B300450C CrossRefGoogle Scholar
  16. Nam J, Lim H, Kim C, Yoon Kang J, Shin S (2012) Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6:024120. doi: 10.1063/1.4718719 CrossRefGoogle Scholar
  17. Nilsson A, Petersson F, Jönsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135. doi: 10.1039/B313493H CrossRefGoogle Scholar
  18. Park J-S, Jung H-I (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal Chem 81:8280–8288. doi: 10.1021/ac9005765 CrossRefGoogle Scholar
  19. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics 17:1–52. doi: 10.1007/s10404-013-1291-9 CrossRefGoogle Scholar
  20. Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89. doi: 10.1039/B512049 CrossRefGoogle Scholar
  21. Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223. doi: 10.1039/B716321E CrossRefGoogle Scholar
  22. Sugioka K, Cheng Y (2014) Ultrafast lasers–reliable tools for advanced materials processing. Light Sci Appl 3:e149t. doi: 10.1038/lsa.2014.30 CrossRefGoogle Scholar
  23. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784. doi: 10.1039/B501885D CrossRefGoogle Scholar
  24. Wang X (2005) Solidification and epitaxial regrowth in surface nanostructuring with laser-assisted scanning tunneling microscope. J Appl Phys 98:114304. doi: 10.1063/1.2135416 CrossRefGoogle Scholar
  25. Weddemann A, Wittbracht F, Auge A, Hütten A (2009) A hydrodynamic switch: microfluidic separation system for magnetic beads. Appl Phys Lett 94:173501. doi: 10.1063/1.3123809 CrossRefGoogle Scholar
  26. Wei H, Chueh B-H, Huiling W, Hall EW, Li C-W, Schirhagl R, Lin J-M, Zare RN (2011) Particle sorting using a porous membrane in a microfluidic device. Lab Chip 11:238–245. doi: 10.1039/C0LC00121J CrossRefGoogle Scholar
  27. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi: 10.1038/nature05058 CrossRefGoogle Scholar
  28. Wu D, Steckl AJ (2009) High speed nanofluidic protein accumulator. Lab Chip 9:1890–1896. doi: 10.1039/B823409D CrossRefGoogle Scholar
  29. Xiao K, Grier DG (2010) Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation. Phys Rev E Stat Nonlin Soft Matter Phys 82:051407. doi: 10.1103/PhysRevE.82.051407 CrossRefGoogle Scholar
  30. Xiao Z, Wang A, Perumal J, Kim D-P (2010) Facile fabrication of monolithic 3D porous silica microstructures and a microfluidic system embedded with the microstructurey. Adv Funct Mater 20:1473–1479. doi: 10.1002/adfm.200902164t CrossRefGoogle Scholar
  31. Xu B, Du W-Q, Li J-W, Hu Y-L, Yang L, Zhang C-C, Li G-Q, Lao Z-X, Ni J-C, Chu J-R, Wu D, Liu S-L, Sugioka K (2016) High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci Rep. doi: 10.1038/srep19989 Google Scholar
  32. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471. doi: 10.1021/ac049863r CrossRefGoogle Scholar
  33. Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2009) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9:87–90. doi: 10.1039/B809123D CrossRefGoogle Scholar
  34. Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, Tai Y-C (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161. doi: 10.1016/j.chroma.2007.05.064 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yi-Shan Zeng
    • 2
  • Hua Fan
    • 2
  • Bing Xu
    • 1
  • Zhen Zhang
    • 1
  • Fei-Fei Ren
    • 3
  • Chen Zhou
    • 4
  • Si-Zhu Wu
    • 4
  • Yan-Lei Hu
    • 1
    Email author
  • Wu-Lin Zhu
    • 1
  • Ya-Hui Su
    • 3
  • Jia-Ru Chu
    • 1
  • Jia-Wen Li
    • 1
  • Guo-Qiang Li
    • 1
  • Dong Wu
    • 1
    Email author
  1. 1.CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Department of Mechanical and Electronic EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  3. 3.School of Electrical Engineering and AutomationAnhui UniversityHefeiPeople’s Republic of China
  4. 4.School of Instrument Science and Opto-Electronics EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations