Advertisement

Thermocapillary and thermosolutal Marangoni convection of ethanol and ethanol–water mixtures in a microfluidic device

  • L. Butzhammer
  • W. Köhler
Research Paper

Abstract

We have investigated Marangoni convection at an evaporating meniscus of pure ethanol and of ethanol–water mixtures. The experiments were performed in a microfluidic device consisting of \(100\,{\upmu \text{m}}\) wide channels of quadratic cross section and a cylindric reservoir of the same height. Tracer particles were added to determine the velocity field using particle image velocimetry. In the case of pure ethanol, thermocapillary convection rolls similar to those reported in the literature were observed. The velocity of the flow can be controlled by local laser heating, confirming the thermocapillary nature of the process. Ethanol–water mixtures show distinctly different patterns when compared to pure ethanol: the flow velocity of the symmetric vortices is significantly increased and almost insensitive to heating on the symmetry line. By heating near the contact line of the meniscus, the symmetric two-roll state can be reversibly switched into an asymmetric one-roll state with the flow at the interface pointing in the direction of the temperature gradient. A consistent interpretation is obtained based on the assumption that solutocapillary instead of thermocapillary forces is the main driving mechanism in the case of the mixtures.

Keywords

Microfluidics Marangoni Liquid mixtures Convection 

Notes

Acknowledgements

We thank the group of S. Förster (Physical Chemistry I, University of Bayreuth) for support in the fabrication of the microfluidic devices.

References

  1. Basu AS, Gianchandani YB (2008) Virtual microfluidic traps, filters, channels and pumps using marangoni flows. J Micromech Microeng 18:115,031. doi: 10.1088/0960-1317/18/11/115031 CrossRefGoogle Scholar
  2. Berry DW, Heckenberg NR, Rubinsztein-Dunlop H (2000) Effects associated with bubble formation in optical trapping. J Mod Opt 47:1575–1585. doi: 10.1080/095003400405019 CrossRefGoogle Scholar
  3. Buffone C, Sefiane K (2003) Marangoni convection in capillary tubes filled with volatile liquids. In: ASME 2003 1st international conference on microchannels and minichannels, Rochester, NY, p 651. doi: 10.1115/ICMM2003-1082
  4. Buffone C, Sefiane K (2004a) Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores. Int J Multiph Flow 30:1071. doi: 10.1016/j.ijmultiphaseflow.2004.05.010 CrossRefzbMATHGoogle Scholar
  5. Buffone C, Sefiane K (2004b) IR measurements of interfacial temperature during phase change in a confined environment. Exp Therm Fluid Sci 29:65. doi: 10.1016/j.expthermflusci.2004.02.004 CrossRefGoogle Scholar
  6. Buffone C, Sefiane K (2008) Controlling evaporative thermocapillary convection using external heating: an experimental investigation. Exp Therm Fluid Sci 32:1287. doi: 10.1016/j.expthermflusci.2008.02.009 CrossRefGoogle Scholar
  7. Buffone C, Sefiane K, Easson W (2005a) Marangoni-driven instabilities of an evaporating liquid-vapor interface. Phys Rev E 71:056,302. doi: 10.1103/PhysRevE.71.056302 CrossRefGoogle Scholar
  8. Buffone C, Sefiane K, Christy JRE (2005b) Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using microparticle image velocimetry. Phys Fluids 17:052, 104. doi: 10.1063/1.1901688 CrossRefzbMATHGoogle Scholar
  9. Buffone C, Minetti C, Boussemaere L, Roudgar M, Coninck JD (2014) Marangoni convection in evaporating meniscus with changing contact angle. Exp Fluids 55:1. doi: 10.1007/s00348-014-1833-2 CrossRefGoogle Scholar
  10. Cecere A, Buffone C, Savino R (2014) Self-induced Marangoni flow in evaporating alcoholic solutions. Int J Heat Mass Transf 78:852. doi: 10.1016/j.ijheatmasstransfer.2014.07.055 CrossRefGoogle Scholar
  11. Chamarthy P, Dhavaleswarapu HK, Garimella SV, Murthy JY, Wereley ST (2007) Visualization of convection patterns near an evaporating meniscus using \(\mu\)PIV. Exp Fluids 44:431. doi: 10.1007/s00348-007-0376-1 CrossRefGoogle Scholar
  12. de Saint Vincent MR, Delville JP (2012) Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing. Phys Rev E 85:026,310. doi: 10.1103/PhysRevE.85.026310 CrossRefGoogle Scholar
  13. Dhavaleswarapu HK, Chamarthy P, Garimella SV, Murthy JY (2007) Experimental investigation of steady buoyant-thermocapillary convection near an evaporating meniscus. Phys Fluids 19:082,103. doi: 10.1063/1.2752477 CrossRefzbMATHGoogle Scholar
  14. Dortmund data bank (2017). www.ddbst.com
  15. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974. doi: 10.1021/ac980656z CrossRefGoogle Scholar
  16. Gallardo BS, Gupta VK, Eagerton FD, Jong LI, Craig VS, Shah RR, Abbott NL (1999) Electrochemical principles for active control of liquids on submillimeter scales. Science 283:57. doi: 10.1126/science.283.5398.57 CrossRefGoogle Scholar
  17. Gazzola D, Scarselli EF, Guerrieri R (2009) 3d visualization of convection patterns in lab-on-chip with open microfluidic outlet. Microfluid Nanofluid 7:659. doi: 10.1007/s10404-009-0426-5 CrossRefGoogle Scholar
  18. Haynes WM, Lide DR, Bruno TJ (eds) (2013) CRC handbook of chemistry and physics, 94th edn. CRC Press, Boca RatonGoogle Scholar
  19. Jasper JJ (1972) The surface tension of pure liquid compounds. J Phys Chem Ref Data 1:841. doi: 10.1063/1.3253106 CrossRefGoogle Scholar
  20. Kostarev K, Zuev A, Viviani A (2011) Oscillatory regimes of solutocapillary Marangoni convection. In: El Amin M (ed) Advanced topics in mass transfer. InTech. www.intechopen.com/books/advanced-topics-in-mass-transfer/oscillatory-regimes-of-solutocapillary-marangoni-convection
  21. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood CliffsGoogle Scholar
  22. Levich VG, Krylov VS (1969) Surface-tension-driven phenomena. Ann Rev Fluid Mech 1:293. doi: 10.1146/annurev.fl.01.010169.001453 CrossRefGoogle Scholar
  23. Lubetkin S (2003) Thermal Marangoni effects on gas bubbles are generally accompanied by solutal Marangoni effects. Langmuir 19:10,774. doi: 10.1021/la0358365 CrossRefGoogle Scholar
  24. Marin A, Liepelt R, Rossi M, Kähler CJ (2016) Surfactant-driven flow transitions in evaporating droplets. Soft Matter 12:1593. doi: 10.1039/C5SM02354H CrossRefGoogle Scholar
  25. Minetti C, Buffone C (2014) Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy. Phys Rev E 89:013, 007. doi: 10.1103/PhysRevE.89.013007 CrossRefGoogle Scholar
  26. Morris CJ, Parviz BA (2006) Self-assembly and characterization of Marangoni microfluidic actuators. J Micromech Microeng 16:972. doi: 10.1088/0960-1317/16/5/014 CrossRefGoogle Scholar
  27. Namura K, Nakajima K, Kimura K, Suzuki M (2015) Photothermally controlled Marangoni flow around a micro bubble. Appl Phys Lett 106:043,101. doi: 10.1063/1.4906929 CrossRefGoogle Scholar
  28. Nepomnyashchy AA (2002) Interfacial phenomena and convection. No. 124 in Chapman & Hall/CRC monographs and surveys in pure and applied mathematics. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  29. Pan Z, Wang H (2010) Symmetry-to-asymmetry transition of Marangoni flow at a convex volatizing meniscus. Microfluid Nanofluid 9:657. doi: 10.1007/s10404-010-0579-2 CrossRefGoogle Scholar
  30. Pan Z, Wang H (2012) Marangoni asymmetrical instability in a T-junction microchannel with an open outlet. In: ASME 2012 third international conference on micro/nanoscale heat and mass transfer, Atlanta, p 863. doi: 10.1115/MNHMT2012-75164
  31. Pan Z, Wang H (2013) Benard-Marangoni instability on evaporating menisci in capillary channels. Int J Heat Mass Transf 63:239. doi: 10.1016/j.ijheatmasstransfer.2013.03.082 CrossRefGoogle Scholar
  32. Pan Z, Wang F, Wang H (2011) Instability of Marangoni toroidal convection in a microchannel and its relevance with the flowing direction. Microfluid Nanofluid 11:327. doi: 10.1007/s10404-011-0802-9 CrossRefGoogle Scholar
  33. Pan ZH, Wang H, Yang Z (2012) Marangoni bifurcation flow in a microchannel T-junction and its micropumping effect: a computational study. Chin Phys Lett 29:074,702. doi: 10.1088/0256-307X/29/7/074702 CrossRefGoogle Scholar
  34. Roché M, Li Z, Griffiths IM, Le Roux S, Cantat I, Saint-Jalmes A, Stone HA (2014) Marangoni flow of soluble amphiphiles. Phys Rev Lett 112:208,302. doi: 10.1103/PhysRevLett.112.208302 CrossRefGoogle Scholar
  35. Scriven LE, Sternling CV (1960) The Marangoni effects. Nature 187:186. doi: 10.1038/187186a0 CrossRefGoogle Scholar
  36. Sefiane K, Ward CA (2007) Recent advances on thermocapillary flows and interfacial conditions during the evaporation of liquids. Adv Colloid Interface Sci 134–135:201. doi: 10.1016/j.cis.2007.04.020 CrossRefGoogle Scholar
  37. Song X, Nobes DS (2011) Experimental investigation of evaporation-induced convection in water using laser based measurement techniques. Exp Therm Fluid Sci 35:910. doi: 10.1016/j.expthermflusci.2011.01.010 CrossRefGoogle Scholar
  38. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977. doi: 10.1103/RevModPhys.77.977 CrossRefGoogle Scholar
  39. Verneuil E, Cordero M, Gallaire F, Baroud CN (2009) Laser-induced force on a microfluidic drop: origin and magnitude. Langmuir 25:5127. doi: 10.1021/la8041605 CrossRefGoogle Scholar
  40. Wang H, Murthy JY, Garimella SV (2008) Transport from a volatile meniscus inside an open microtube. Int J Heat Mass Transf 51:3007. doi: 10.1016/j.ijheatmasstransfer.2007.09.011 CrossRefzbMATHGoogle Scholar
  41. Ward CA, Duan F (2004) Turbulent transition of thermocapillary flow induced by water evaporation. Phys Rev E 69:056308. doi: 10.1103/PhysRevE.69.056308 CrossRefGoogle Scholar
  42. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368. doi: 10.1038/nature05058 CrossRefGoogle Scholar
  43. Zhang J, Behringer RP, Oron A (2007) Marangoni convection in binary mixtures. Phys Rev E 76:016,306. doi: 10.1103/PhysRevE.76.016306 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations