Miniaturized octupole cytometry for cell type independent trapping and analysis

  • Frederik S. O. Fritzsch
  • Lars M. Blank
  • Christian DusnyEmail author
  • Andreas Schmid
Research Paper


Microflow cytometry, including robust alignment, separation, and trapping of living cells, is on the verge of commercialization. Yet, the necessary equipment is frequently not applicable to certain biological questions as the products have been specifically developed for particular cell types. We present a versatile cell handling technology based on single miniaturized octupoles that enables the physical manipulation of a broad variety of different cell types via controlled negative dielectrophoresis force fields. The octupole technology allows contactless and time-resolved cell analysis in physicochemical controlled microenvironments. Contactless cell manipulation and trapping with the octupole technology were shown to be independent of cell size and morphology. This was demonstrated with nine different cell types of technical and medical relevance, ranging from motile bacteria over yeast and small platelets (thrombocytes) up to large cancer cells. We also demonstrate applications of octupole cytometry for controlled analyses of mechano-elastic properties of single cells, contactless cultivation and perfusion for perturbation studies, as well as studying the interaction of different cell types in physical proximity. These examples prove the miniaturized octupole format as a versatile, noninvasive, and robust tool for microfluidic single cell cytometry that complements existing hydrodynamic, optical, and acoustic technologies.


Single cell analysis Negative dielectrophoresis Microfluidic µTAS nDEP Octupole 



Hence, we are grateful to funding of his thesis by the Leibniz Graduate School—Systems Biology Lab-on-a-Chip (S-BLOC), Dortmund, Germany. We thank Joachim Franzke and his Miniaturization Department of the Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Dortmund, Germany for continuous supply of different cell lines. The research was co-financed by the European Union (EFRE) and supported by the Ministry of Innovation, Science and Research of North-Rhine Westphalia, Germany.

Supplementary material

Supplementary material 1 (WMV 14613 kb)


  1. Athanassiou GA, Moutzouri AG, Gogos CA, Skoutelis AT (2010) Red blood cell deformability in patients with human immunodeficiency virus infection. Eur J Clin Microbiol Infect Dis 29:845–849. doi: 10.1007/s10096-010-0936-9 CrossRefGoogle Scholar
  2. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43. doi: 10.1038/nrm1548 CrossRefGoogle Scholar
  3. Brown RB, Audet J (2008) Current techniques for single-cell lysis. J R Soc Interface 5(Suppl 2):S131–S138. doi: 10.1098/rsif.2008.0009.focus CrossRefGoogle Scholar
  4. Chao T-C, Ros A (2008) Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface 5(Suppl 2):S139–S150. doi: 10.1098/rsif.2008.0233.focus CrossRefGoogle Scholar
  5. Chien S (1987) Red cell deformability and its relevance to blood flow. Annu Rev Physiol 49:177–192. doi: 10.1146/ CrossRefGoogle Scholar
  6. Dürr M, Kentsch J, Müller T et al (2003) Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24:722–731. doi: 10.1002/elps.200390087 CrossRefGoogle Scholar
  7. Dusny C, Schmid A (2015) Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes. Environ Microbiol 17:1839–1856. doi: 10.1111/1462-2920.12667 CrossRefGoogle Scholar
  8. Dusny C, Schmid A (2016) The MOX promoter in Hansenula polymorpha is ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Res. doi: 10.1093/femsyr/fow067 Google Scholar
  9. Dusny C, Fritzsch FSO, Frick O, Schmid A (2012) Isolated microbial single cells and resulting micropopulations grow: faster in controlled environments. Appl Environ Microbiol 78:7132–7136. doi: 10.1128/AEM.01624-12 CrossRefGoogle Scholar
  10. Fritzsch FSO, Kortmann H, Lonzynski J et al (2010) Pressure-resistant and reversible on-tube-sealing for microfluidics. Microfluid Nanofluidics 10:679–684. doi: 10.1007/s10404-010-0695-z CrossRefGoogle Scholar
  11. Fritzsch FSO, Dusny C, Frick O, Schmid A (2012) Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu Rev Chem Biomol Eng 3:129–155. doi: 10.1146/annurev-chembioeng-062011-081056 CrossRefGoogle Scholar
  12. Fritzsch FS, Rosenthal K, Kampert A, Howitz S, Dusny C, Blank LM, Schmid A (2013) Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab Chip 13:397–408. doi: 10.1039/c2lc41092c CrossRefGoogle Scholar
  13. Fuhr GR, Reichle C (2000) Living cells in opto-electrical cages. Trac-Trends Analyt Chem 19:402–409. doi: 10.1016/S0165-9936(00)00015-7 CrossRefGoogle Scholar
  14. Gimsa J (1999) New light-scattering and field-trapping methods access the internal electric structure of submicron particles, like influenza viruses. Ann N Y Acad Sci 873:287–298. doi: 10.1111/j.1749-6632.1999.tb09476.x CrossRefGoogle Scholar
  15. Gimsa J (2001) A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54:23–31. doi: 10.1016/S0302-4598(01)00106-4 CrossRefGoogle Scholar
  16. Gimsa J, Stubbe M, Gimsa U (2014) A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: are electric methods more versatile than acoustic and laser methods? J Electr Bioimp 5:74–91. doi: 10.5617/jeb.557 CrossRefGoogle Scholar
  17. Grom F, Kentsch J, Muller T, Schnelle T, Stelzle M (2006) Accumulation and trapping of hepatitis a virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27:1386–1393. doi: 10.1002/elps.200500416 CrossRefGoogle Scholar
  18. Guck J et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi: 10.1529/biophysj.104.045476 CrossRefGoogle Scholar
  19. Holzel R, Calander N, Chiragwandi Z, Willander M, Bier FF (2005) Trapping single molecules by dielectrophoresis. Phys Rev Lett 95:128102. doi: 10.1103/PhysRevLett.95.128102 CrossRefGoogle Scholar
  20. Hou HW, Bhagat AAS, Lin Chong AG et al (2010) Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605. doi: 10.1039/c003873c CrossRefGoogle Scholar
  21. Huang Y, Pethig R (1999) Electrode design for negative dielectrophoresis. Meas Sci Technol 2:1142–1146. doi: 10.1088/0957-0233/2/12/005 CrossRefGoogle Scholar
  22. Jaeger MS, Mueller T, Schnelle T (2006) Thermometry in dielectrophoresis chips for contact-free cell handling. J Phys D Appl Phys 40:95–105. doi: 10.1088/0022-3727/40/1/S14 CrossRefGoogle Scholar
  23. Jaeger MS, Uhlig K, Schnelle T, Müller T (2008) Contact-free single-cell cultivation by negative dielectrophoresis. J Phys D Appl Phys 41:175502. doi: 10.1088/0022-3727/41/17/175502 CrossRefGoogle Scholar
  24. Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22:33–42. doi: 10.1109/MEMB.2003.1304999 CrossRefGoogle Scholar
  25. Kim U, Soh HT (2009) Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic–magnetic activated cell sorter. Lab Chip 9:2313–2318. doi: 10.1039/b903950c CrossRefGoogle Scholar
  26. Kortmann H (2011) Single cell analytics: an overview. Adv Biochem Eng Biotechnol 124:99–122. doi: 10.1007/10_2010_96 Google Scholar
  27. Kortmann H, Blank LM, Schmid A (2009) A rapid, reliable, and automatable lab-on-a-chip interface. Lab Chip 9:1455–1460. doi: 10.1039/b820183h CrossRefGoogle Scholar
  28. Leavy O (2012) Natural killer cells: maturation and function of NK cells. Nat Rev Immunol 12:3172. doi: 10.1038/nri3172 Google Scholar
  29. Mills JP, Qie L, Dao M, Lim CT, Suresh S (2004) Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst 1:169–180Google Scholar
  30. Muller T, Pfennig A, Klein P et al (2003) The potential of dielectrophoresis for single-cell experiments. IEEE Eng Med Biol Mag 22:51–61. doi: 10.1109/MEMB.2003.1266047 CrossRefGoogle Scholar
  31. Otto O et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12:199–202. doi: 10.1038/nmeth.3281 CrossRefGoogle Scholar
  32. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics. doi: 10.1063/1.3456626 Google Scholar
  33. Pohl HA (2011) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871. doi: 10.1063/1.1700065 CrossRefGoogle Scholar
  34. Pohl HA, Hawk I (1966) Separation of living and dead cells by dielectrophoresis. Science 152:647–649. doi: 10.1126/science.152.3722.647-a CrossRefGoogle Scholar
  35. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69:1728–1732. doi: 10.1158/0008-5472.CAN-08-4073 CrossRefGoogle Scholar
  36. Rosenthal K, Falke F, Frick O et al (2015) An inert continuous microreactor for the isolation and analysis of a single microbial cell. Micromachines 6:1836–1855. doi: 10.3390/mi6121459 CrossRefGoogle Scholar
  37. Schnelle T, Hagedorn R, Fuhr G et al (1993) Three-dimensional electric field traps for manipulation of cells–calculation and experimental verification. Biochim Biophys Acta 1157:127–140. doi: 10.1016/0304-4165(93)90056-E CrossRefGoogle Scholar
  38. Schnelle T, Müller T, Gradl G et al (1999) Paired microelectrode system: dielectrophoretic particle sorting and force calibration. J Electrostat 47:121–132. doi: 10.1016/S0304-3886(99)00032-7 CrossRefGoogle Scholar
  39. Schnelle T, Müller T, Fuhr G (2000) Trapping in AC octode field cages. J Electrostat 50:17–29. doi: 10.1016/S0304-3886(00)00012-7 CrossRefGoogle Scholar
  40. Wang X, Yang J, Gascoyne PR (1999) Role of peroxide in AC electrical field exposure effects on friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochim Biophys Acta 1426:53–68. doi: 10.1016/S0304-4165(98)00122-6 CrossRefGoogle Scholar
  41. Washizu M, Jones TB (1994) Multipolar dielectrophoretic force calculation. J Electrostat 33:187–198. doi: 10.1016/0304-3886(94)90053-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Frederik S. O. Fritzsch
    • 1
    • 2
  • Lars M. Blank
    • 1
    • 3
  • Christian Dusny
    • 4
    Email author
  • Andreas Schmid
    • 1
    • 4
  1. 1.Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany
  2. 2.R&D EngineeringMiltenyi Biotec GmbHBergisch GladbachGermany
  3. 3.iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
  4. 4.Department of Solar MaterialsHelmholtz Centre for Environmental Research, UFZLeipzigGermany

Personalised recommendations