Advertisement

Dynamic behaviour of a magnetically actuated floating liquid marble

  • Mei Kum Khaw
  • Chin Hong Ooi
  • Faisal Mohd-Yasin
  • Anh V. Nguyen
  • Geoffrey M. Evans
  • Nam-Trung Nguyen
Research Paper

Abstract

This paper reports the dynamic behaviour of a magnetically actuated floating liquid marble by analysing the oscillation of the marble. A liquid marble is a liquid droplet coated with hydrophobic powder. Magnetite particles inside the marble make it magnetic. The marble floats on a carrier liquid that contains aqueous glycerol of various concentrations. A permanent magnet located under the carrier liquid drives the floating marble with the initial velocity. Stopping the magnet abruptly causes the marble to oscillate around its final position for a few seconds. The oscillation was recorded and analysed using customised image processing and evaluation software. The damped harmonic motion model was then applied to the data and tested. Subsequently, critical parameters of the system such as the initial displacement, friction correction factor, the apparent frequency and the spring constant were determined and discussed. The simple experimental set-up and convenient theoretical approach allow us to characterise the marble motion under the influence of a magnet with good accuracy.

Notes

Acknowledgements

We acknowledge the Australian Research Council for the discovery Grant DP170100277.

Supplementary material

Supplementary material 1 (AVI 1178 kb)

Supplementary material 2 (AVI 2126 kb)

Supplementary material 3 (AVI 1772 kb)

References

  1. Arbatan T, Al-Abboodi A, Sarvi F, Chan PP, Shen W (2012) Tumor inside a pearl drop. Adv Healthc Mater 1(4):467–469CrossRefGoogle Scholar
  2. Aussillous P, Quere D (2001) Liquid marbles. Nature 411(6840):924–927CrossRefzbMATHGoogle Scholar
  3. Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A Math Phys Eng Sci 462(2067):973–999CrossRefzbMATHGoogle Scholar
  4. Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16(4):266–271CrossRefGoogle Scholar
  5. Bormashenko E, Musin A (2009) Revealing of water surface pollution with liquid marbles. Appl Surf Sci 255(12):6429–6431CrossRefGoogle Scholar
  6. Bormashenko E, Pogreb R, Bormashenko Y, Musin A, Stein T (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122CrossRefGoogle Scholar
  7. Bormashenko E, Bormashenko Y, Musin A (2009a) Water rolling and floating upon water: marbles supported by a water/marble interface. J Colloid Interface Sci 333(1):419–421CrossRefGoogle Scholar
  8. Bormashenko E, Bormashenko Y, Musin A, Barkay Z (2009b) On the mechanism of floating and sliding of liquid marbles. ChemPhysChem 10(4):654–656CrossRefGoogle Scholar
  9. Bormashenko E, Pogreb R, Musin A (2012) Stable water and glycerol marbles immersed in organic liquids: from liquid marbles to Pickering-like emulsions. J Colloid Interface Sci 366(1):196–199CrossRefGoogle Scholar
  10. Bormashenko E, Bormashenko Y, Grynyov R, Aharoni H, Whyman G, Binks BP (2015) Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by Marangoni flow. J Phys Chem C 119(18):9910–9915CrossRefGoogle Scholar
  11. Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9(37):8980–8991CrossRefGoogle Scholar
  12. Cheng N-S (2008) Formula for the viscosity of a glycerol–water mixture. Ind Eng Chem Res 47(9):3285–3288CrossRefGoogle Scholar
  13. Dupin D, Armes SP, Fujii S (2009) Stimulus-responsive liquid marbles. J Am Chem Soc 131(15):5386–5387CrossRefGoogle Scholar
  14. Fujii S, Kameyama S, Armes SP, Dupin D, Suzaki M, Nakamura Y (2010) pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles. Soft Matter 6(3):635–640CrossRefGoogle Scholar
  15. Fujii S, Suzaki M, Armes SP, Dupin D, Hamasaki S, Aono K, Nakamura Y (2011) Liquid marbles prepared from pH-responsive sterically stabilized latex particleS. Langmuir 27(13):8067–8074CrossRefGoogle Scholar
  16. Gao L, McCarthy TJ (2007) Ionic liquid marbles. Langmuir 23(21):10445–10447CrossRefGoogle Scholar
  17. Inoue M, Fujii S, Nakamura Y, Iwasaki Y, Yusa S-I (2011) pH-responsive disruption of ‘liquid marbles’ prepared from water and poly(6-(acrylamido) hexanoic acid)-grafted silica particles. Polym J 43(9):778–784CrossRefGoogle Scholar
  18. Kavokine N, Anyfantakis M, Morel M, Rudiuk S, Bickel T, Baigl D (2016) Light-driven transport of a liquid marble with and against surface flows. Angew Chem Int Ed 55(37):11183–11187CrossRefGoogle Scholar
  19. Khaw MK, Ooi CH, Mohd-Yasin F, Vadivelu R, John JS, Nguyen N-T (2016) Digital microfluidics with a magnetically actuated floating liquid marble. Lab Chip 16(12):2211–2218CrossRefGoogle Scholar
  20. McEleney P, Walker GM, Larmour IA, Bell SEJ (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147(2–3):373–382CrossRefGoogle Scholar
  21. McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7(12):5473–5481CrossRefGoogle Scholar
  22. Muller E (1924) Akad Wiss Wien Sitzungsber, Math-Naturwiss Kl, Abt IIa, 133:133-147Google Scholar
  23. Nakai K, Fujii S, Nakamura Y, Yusa S-I (2013) Ultraviolet-light-responsive liquid marbles. Chem Lett 42(6):586–588CrossRefGoogle Scholar
  24. Nguyen NT, Zhu GP, Chua YC, Phan VN, Tan SH (2010) Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir 26(15):12553–12559CrossRefGoogle Scholar
  25. Ooi CH, Nguyen N-T (2015) Manipulation of liquid marbles. Microfluid Nanofluid 19(3):483–495CrossRefGoogle Scholar
  26. Ooi CH, Nguyen AV, Evans GM, Gendelman O, Bormashenko E, Nguyen N-T (2015a) A floating self-propelling liquid marble containing aqueous ethanol solutions. RSC Adv 5(122):101006–101012CrossRefGoogle Scholar
  27. Ooi CH, Vadivelu RK, St John J, Dao DV, Nguyen N-T (2015b) Deformation of a floating liquid marble. Soft Matter 11(23):4576–4583CrossRefGoogle Scholar
  28. Ooi CH, Bormashenko E, Nguyen AV, Evans GM, Dao DV, Nguyen N-T (2016a) Evaporation of ethanol-water binary mixture sessile liquid marbles. Langmuir 32(24):6097–6104CrossRefGoogle Scholar
  29. Ooi CH, Nguyen AV, Evans GM, Dao DV, Nguyen NT (2016b) Measuring the coefficient of friction of a small floating liquid marble. Sci Rep 6:38346CrossRefGoogle Scholar
  30. Ooi CH, Plackowski C, Nguyen AV, Vadivelu RK, John JAS, Dao DV, Nguyen N-T (2016c) Floating mechanism of a small liquid marble. Sci Rep 6:21777CrossRefGoogle Scholar
  31. Petkov JT, Denkov ND, Danov KD, Velev OD, Aust R, Durst F (1995) Measurement of the drag coefficient of spherical particles attached to fluid interfaces. J Colloid Interface Sci 172(1):147–154CrossRefGoogle Scholar
  32. Sarvi F, Jain K, Arbatan T, Verma PJ, Hourigan K, Thompson MC, Shen W, Chan PP (2015) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1):77–86CrossRefGoogle Scholar
  33. Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302CrossRefGoogle Scholar
  34. Vadivelu RK, Ooi CH, Yao R-Q, Tello Velasquez J, Pastrana E, Diaz-Nido J, Lim F, Ekberg JAK, Nguyen N-T, St John JA (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083CrossRefGoogle Scholar
  35. Vassileva ND, van den Ende D, Mugele F, Mellema J (2005) Capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21(24):11190–11200CrossRefGoogle Scholar
  36. Velev OD, Denkov ND, Paunov VN, Kralchevsky PA, Nagayama K (1994) Capillary image forces: II. Experiment. J Colloid Interface Sci 167(1):66–73CrossRefGoogle Scholar
  37. Xue Y, Wang H, Zhao Y, Dai L, Feng L, Wang X, Lin T (2010) Magnetic liquid marbles: a “Precise” miniature reactor. Adv Mater 22(43):4814–4818CrossRefGoogle Scholar
  38. Zhang L, Cha D, Wang P (2012) Remotely controllable liquid marbles. Adv Mater 24(35):4756–4760CrossRefGoogle Scholar
  39. Zhao Y, Fang J, Wang H, Wang X, Lin T (2010) Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710CrossRefGoogle Scholar
  40. Zhao Y, Xu ZG, Parhizkar M, Fang J, Wang XG, Lin T (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13(4):555–564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology CentreGriffith UniversityNathanAustralia
  2. 2.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  3. 3.Department of Chemical EngineeringUniversity of NewcastleCallaghanAustralia

Personalised recommendations