Advertisement

Rapid prototyping of single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions by using laser ablation and UV-curable polymer

Abstract

The growing demand for microfluidic analytical devices calls for fast, cost-effective and high-throughput fabrication methods. Here we report a low-cost rapid prototyping method for single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions. Channel patterns with different user-designed depths ranging from micrometres to millimetres are engraved on a polymethylmethacrylate (PMMA) plate in one step based on a laser ablation approach. A UV-curable polymer, Norland Optical Adhesive (NOA) 81, is then used to replicate the channel patterns from the PMMA female mould and is finally used as the master for single-layer polydimethylsiloxane (PDMS) microfluidic devices. This rapid prototyping method can significantly facilitate the fast evaluation of proof of concept in microfluidic researches and small-scale mass production for commercialization applications.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alapan Y, Little JA, Gurkan UA (2014) Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Sci Rep 4:7173. doi:10.1038/srep07173

  2. Alapan Y, Hasan MN, Shen R, Gurkan UA (2015) Three-dimensional printing based hybrid manufacturing of microfluidic devices. J Nanotechnol Eng Med 6(2):021007-021007-021009. doi:10.1115/1.4031231

  3. Alapan Y, Kim C, Adhikari A, Gray KE, Gurkan-Cavusoglu E, Little JA, Gurkan UA (2016) Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res 173(74–91):e78. doi:10.1016/j.trsl.2016.03.008

  4. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41. doi:10.1021/ac503968p

  5. Chen X, Shen J, Zhou M (2016) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001

  6. Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14(2):424–430. doi:10.1039/C3LC50956G

  7. Cosson S, Aeberli LG, Brandenberg N, Lutolf MP (2015) Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing. Lab Chip 15(1):72–76. doi:10.1039/C4LC00848K

  8. de Mello AJ, Habgood M, Lancaster NL, Welton T, Wootton RCR (2004) Precise temperature control in microfluidic devices using Joule heating of ionic liquids. Lab Chip 4(5):417–419. doi:10.1039/B405760K

  9. Detlef S, Henning K, Jörg PK (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14(2):182

  10. Duraiswamy S, Khan SA (2010) Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Lett 10(9):3757–3763. doi:10.1021/nl102478q

  11. Eluru G, Julius LAN, Gorthi SS (2016) Single-layer microfluidic device to realize hydrodynamic 3D flow focusing. Lab Chip 16(21):4133–4141. doi:10.1039/C6LC00935B

  12. Guan G, Wu L, Bhagat AA, Li Z, Chen PCY, Chao S, Ong CJ, Han J (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci Rep 3:1475. doi:10.1038/srep01475

  13. Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364–2378. doi:10.1039/C5LC00234F

  14. Guijt RM, Dodge A, van Dedem GWK, de Rooij NF, Verpoorte E (2003) Chemical and physical processes for integrated temperature control in microfluidic devices. Lab Chip 3(1):1–4. doi:10.1039/B210629A

  15. Gurkan UA, Anand T, Tas H, Elkan D, Akay A, Keles HO, Demirci U (2011) Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip 11(23):3979–3989. doi:10.1039/C1LC20487D

  16. Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8(7):1097–1103. doi:10.1039/B719381E

  17. Isiksacan Z, Guler MT, Aydogdu B, Bilican I, Elbuken C (2016) Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation. J Micromech Microeng 26(3):035008

  18. Kim J, Chaudhury MK, Owen MJ (2006) Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers. J Colloid Interf Sci 293(2):364–375. doi:10.1016/j.jcis.2005.06.068

  19. Kim SH, Yang Y, Kim M, Nam SW, Lee KM, Lee NY, Kim YS, Park S (2007) Simple route to hydrophilic microfluidic chip fabrication using an ultraviolet (UV)-cured polymer. Adv Funct Mater 17(17):3493–3498. doi:10.1002/adfm.200601203

  20. Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2(4):242–246. doi:10.1039/B206409J

  21. Kuo JS, Chiu DT (2011) Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. Lab Chip 11(16):2656–2665. doi:10.1039/C1LC20125E

  22. Lai D, Labuz JM, Kim J, Luker GD, Shikanov A, Takayama S (2013) Simple multi-level microchannel fabrication by pseudo-grayscale backside diffused light lithography. RSC Adv 3(42):19467–19473. doi:10.1039/C3RA43834A

  23. Lee JM, Zhang M, Yeong WY (2016) Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid Nanofluid 20(1):5. doi:10.1007/s10404-015-1688-8

  24. Liga A, Morton JAS, Kersaudy-Kerhoas M (2016) Safe and cost-effective rapid-prototyping of multilayer PMMA microfluidic devices. Microfluid Nanofluid 20(12):164. doi:10.1007/s10404-016-1823-1

  25. Liu H-B, Gong H-Q (2009) Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser. J Micromech Microeng 19(3):037002

  26. Lu Y, Shi Z, Yu L, Li CM (2016) Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm[registered sign]. RSC Adv 6(88):85468–85472. doi:10.1039/C6RA18988A

  27. Mao H, Yang T, Cremer PS (2002) A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc 124(16):4432–4435. doi:10.1021/ja017625x

  28. Mavraki E, Moschou D, Kokkoris G, Vourdas N, Chatzandroulis S, Tserepi A (2011) A continuous flow μPCR device with integrated microheaters on a flexible polyimide substrate. Procedia Eng 25:1245–1248. doi:10.1016/j.proeng.2011.12.307

  29. Min K-I, Kim J-O, Kim H, Im DJ, Kim D-P (2016) Multilayered film microreactors fabricated by a one-step thermal bonding technique with high reproducibility and their applications. Lab Chip 16(6):977–983. doi:10.1039/C5LC01585E

  30. Nath P, Fung D, Kunde YA, Zeytun A, Branch B, Goddard G (2010) Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes. Lab Chip 10(17):2286–2291. doi:10.1039/C002457K

  31. Park J, Kim YS, Hammond PT (2005) Chemically nanopatterned surfaces using polyelectrolytes and ultraviolet-cured hard molds. Nano Lett 5(7):1347–1350. doi:10.1021/nl050592p

  32. Prakash S, Kumar S (2017) Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt Laser Technol 94:180–192. doi:10.1016/j.optlastec.2017.03.034

  33. Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci 110(22):E1974–E1983. doi:10.1073/pnas.1216989110

  34. Shamloo A, Ma N, M-m Poo, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299. doi:10.1039/B719788H

  35. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651. doi:10.1126/science.1066238

  36. Sun Y, Kwok YC, Nguyen N-T (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16(8):1681

  37. Velve Casquillas G, Fu C, Le Berre M, Cramer J, Meance S, Plecis A, Baigl D, Greffet J-J, Chen Y, Piel M, Tran PT (2011) Fast microfluidic temperature control for high resolution live cell imaging. Lab Chip 11(3):484–489. doi:10.1039/C0LC00222D

  38. Vigolo D, Rusconi R, Piazza R, Stone HA (2010) A portable device for temperature control along microchannels. Lab Chip 10(6):795–798. doi:10.1039/B919146A

  39. Villermaux E, Stroock AD, Stone HA (2008) Bridging kinematics and concentration content in a chaotic micromixer. Phys Rev E 77(1):015301

  40. Wang ZK, Zheng HY, Lim RYH, Wang ZF, Lam YC (2011) Improving surface smoothness of laser-fabricated microchannels for microfluidic application. J Micromech Microeng 21(9):095008

  41. Wu M-H, Huang S-B, Cui Z, Cui Z, Lee G-B (2008) Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sens Actuators B Chem 129(1):231–240. doi:10.1016/j.snb.2007.07.145

  42. Xiong B, Ren K, Shu Y, Chen Y, Shen B, Wu H (2014) Recent developments in microfluidics for cell studies. Adv Mater 26(31):5525–5532. doi:10.1002/adma.201305348

  43. Yan Z, Huang X, Yang C (2015) Deposition of colloidal particles in a microchannel at elevated temperatures. Microfluid Nanofluid 18(3):403–414. doi:10.1007/s10404-014-1448-1

  44. Yasui T, Omoto Y, Osato K, Kaji N, Suzuki N, Naito T, Watanabe M, Okamoto Y, Tokeshi M, Shamoto E, Baba Y (2011) Microfluidic baker’s transformation device for three-dimensional rapid mixing. Lab Chip 11(19):3356–3360. doi:10.1039/C1LC20342H

  45. Zhang M, Wu J, Wang L, Xiao K, Wen W (2010) A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10(9):1199–1203. doi:10.1039/B923101C

Download references

Acknowledgements

The work is supported by the Ministry of Education, Singapore, under Academic Research Fund (AcRF) Tier 1 Grant No. RG97/13 and RG80/15.

Author information

Correspondence to Zhibin Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (WMV 9012 kb)

Supplementary material 1 (PDF 255 kb)

Supplementary material 2 (WMV 9012 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Huang, X. & Yang, C. Rapid prototyping of single-layer microfluidic PDMS devices with abrupt depth variations under non-clean-room conditions by using laser ablation and UV-curable polymer. Microfluid Nanofluid 21, 108 (2017). https://doi.org/10.1007/s10404-017-1943-2

Download citation

Keywords

  • Microfluidics
  • Microfabrication
  • Rapid prototyping
  • Single-layer PDMS
  • Laser ablation
  • UV-curable polymer