Electrokinetic motion of single nanoparticles in single PDMS nanochannels

  • Ran Peng
  • Dongqing LiEmail author
Research Paper


Electrokinetic motion of single nanoparticles in single nanochannels was studied systematically by image tracking method. A novel method to fabricate PDMS-glass micro/nanochannel chips with single nanochannels was presented. The effects of ionic concentration of the buffer solution, particle-to-channel size ratio and electric field on the electrokinetic velocity of fluorescent nanoparticles were studied. The experimental results show that the apparent velocity of nanoparticles in single nanochannels increases with the ionic concentration when the ionic concentration is low and decreases with the ionic concentration when the concentration is high. The apparent velocity decreases with the particle-to-channel size ratio (a/b). Under the condition of low electric fields, nanoparticles can hardly move in single nanochannels with a large particle-to-channel size ratio. Generally, the apparent velocity increases with the applied electric field linearly. The experimental study presented in this article is valuable for future research and applications of transport and manipulation of nanoparticles in nanofluidic devices, such as separation of charged nanoparticles and DNA molecules.


Electrokinetic motion Nanoparticles PDMS nanochannels Particle-to-channel size ratio 



The authors wish to thank the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada through a research grant to D. Li.

Supplementary material

10404_2017_1848_MOESM1_ESM.docx (978 kb)
Supplementary material 1 (DOCX 978 kb)

Supplementary material 2 (MP4 1219 kb)


  1. Ai Y, Liu J, Zhang B, Qian S (2010) Field effect regulation of DNA translocation through a nanopore. Anal Chem 82:8217–8225CrossRefGoogle Scholar
  2. Chen SB, Keh HJ (1988) Electrophoresis in a dilute dispersion of colloidal spheres. AIChE J 34:1075–1085. doi: 10.1002/aic.690340704 CrossRefGoogle Scholar
  3. Chen WJ, Keh HJ (2013) Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness. J Phys Chem B 117:9757–9767. doi: 10.1021/jp405357e CrossRefGoogle Scholar
  4. Davenport M, Healy K, Pevarnik M et al (2012) The role of pore geometry in single nanoparticle detection. ACS Nano 6:8366–8380. doi: 10.1021/nn303126n CrossRefGoogle Scholar
  5. Delgado AV, González-Caballero F, Hunter RJ et al (2007) Measurement and interpretation of electrokinetic phenomena. J Colloids Interface Sci 309:194–224. doi: 10.1016/j.jcis.2006.12.075 CrossRefGoogle Scholar
  6. Ding JM, Keh HJ (2001) The electrophoretic mobility and electric conductivity of a concentrated suspension of colloidal spheres with arbitrary double-layer thickness. J Colloids Interface Sci 236:180–193. doi: 10.1006/jcis.2000.7383 CrossRefGoogle Scholar
  7. Duan C, Wang W, Xie Q (2013) Fabrication of nanofluidic devices. Biomicrofluidics 7:26501. doi: 10.1063/1.4794973 CrossRefGoogle Scholar
  8. Dukhin SS (1993) Non-equilibrium electric surface phenomena. Adv Colloids Interface Sci 44:1–134. doi: 10.1016/0001-8686(93)80021-3 CrossRefGoogle Scholar
  9. Ennis J, Anderson J (1997) Boundary effects on electrophoretic motion of spherical particles for thick double layers and low zeta potential. J Colloids Interface Sci 185:497–514. doi: 10.1006/jcis.1996.4596 CrossRefGoogle Scholar
  10. Fu J, Schoch RB, Stevens AL et al (2007) A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nanotechnol 2:121–128CrossRefGoogle Scholar
  11. Han R, Wang G, Qi S et al (2012) Electrophoretic migration and axial diffusion of individual nanoparticles in cylindrical nanopores. J Phys Chem C 116:18460–18468. doi: 10.1021/jp303855d CrossRefGoogle Scholar
  12. Harms ZD, Haywood DG, Kneller AR et al (2015) Single-particle electrophoresis in nanochannels. Anal Chem 87:699–705. doi: 10.1021/ac503527d CrossRefGoogle Scholar
  13. Henry DC (1931) The cataphoresis of suspended particles. Part I. The equation of cataphoresis. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences. The royal society, pp 106–129Google Scholar
  14. Hsu J-P, Chen Z-S (2007) Electrophoresis of a sphere along the axis of a cylindrical pore: effects of double-layer polarization and electroosmotic flow. Langmuir 23:6198–6204CrossRefGoogle Scholar
  15. Hsu JP, Ku MH (2005) Boundary effect on electrophoresis: finite cylinder in a cylindrical pore. J Colloids Interface Sci 283:592–600. doi: 10.1016/j.jcis.2004.09.004 CrossRefGoogle Scholar
  16. Hsu JP, Ku MH, Kao CY (2004) Electrophoresis of a spherical particle along the axis of a cylindrical pore: effect of electroosmotic flow. J Colloids Interface Sci 276:248–254. doi: 10.1016/j.jcis.2004.03.025 CrossRefGoogle Scholar
  17. Hsu JP, Lo HM, Yeh LH, Tseng S (2012a) Importance of boundary on the electrophoresis of a soft cylindrical particle. J Phys Chem B 116:12626–12632. doi: 10.1021/jp305473s CrossRefGoogle Scholar
  18. Hsu JP, Yee CP, Yeh LH (2012b) Importance of electroosmotic flow and multiple ionic species on the electrophoresis of a rigid sphere in a charge-regulated zwitterionic cylindrical pore. Langmuir 28:10942–10947. doi: 10.1021/la3018634 CrossRefGoogle Scholar
  19. Huang C-H, Hsu H-P, Lee E (2012) Electrophoretic motion of a charged porous sphere within micro- and nanochannels. Phys Chem Chem Phys 14:657–667. doi: 10.1039/C1CP21938C CrossRefGoogle Scholar
  20. Hulings ZK, Melnikov DV, Gracheva ME (2015) Charged nanoparticle in a nanochannel: competition between electrostatic and dielectrophoretic forces. Phys Rev E Stat Nonlinear Soft Matter Phys 91:1–7. doi: 10.1103/PhysRevE.91.062713 CrossRefGoogle Scholar
  21. Jeffet J, Kobo A, Su T et al (2016) Super-resolution genome mapping in silicon nanochannels. ACS Nano. doi: 10.1021/acsnano.6b05398 Google Scholar
  22. Keh H, Anderson J (1985) Boundary effects on electrophoretic motion of colloidal spheres. J Fluid Mech 153:417–439CrossRefzbMATHGoogle Scholar
  23. Keh H, Chen S (1988) Electrophoresis of a colloidal sphere parallel to a dielectric plane. J Fluid Mech 194:377–390CrossRefzbMATHGoogle Scholar
  24. Keh HJ, Chen JB (1993) Particle interactions in electrophoresis. 5. Motion of multiple spheres with thin but finite electrical double-layers. J Colloids Interface Sci 158:199–222. doi: 10.1006/jcis.1993.1248 CrossRefGoogle Scholar
  25. Keh HJ, Chiou JY (1996) Electrophoresis of a colloidal sphere in a circular cylindrical pore. AIChE J 42:1397–1406. doi: 10.1002/aic.690420520 CrossRefGoogle Scholar
  26. Keh HJ, Hsieh TH (2008) Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness. Langmuir 24:390–398. doi: 10.1021/la702399u CrossRefGoogle Scholar
  27. Keh HJ, Yang FR (1991) Particle interactions in electrophoresis. 4. Motion of arbitrary 3-dimensional clusters of spheres. J Colloids Interface Sci 145:362–389CrossRefGoogle Scholar
  28. Lee TC, Keh HJ (2014) Electrophoresis of a spherical particle in a spherical cavity. Microfluid Nanofluidics 16:1107–1115. doi: 10.1007/s10404-013-1276-8 CrossRefGoogle Scholar
  29. Li D (2004) Electrokinetics in microfluidics. Academic Press, CambridgeGoogle Scholar
  30. Li D (2008) Encyclopedia of microfluidics and nanofluidics. Springer, New YorkCrossRefGoogle Scholar
  31. Li D, Daghighi Y (2010) Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel. J Colloids Interface Sci 342:638–642. doi: 10.1016/j.jcis.2009.10.047 CrossRefGoogle Scholar
  32. Li WC, Keh HJ (2016) Electrophoretic mobility of charged porous shells or microcapsules and electric conductivity of their dilute suspensions. Colloids Surfaces A Physicochem Eng Asp 497:154–166. doi: 10.1016/j.colsurfa.2016.02.028 CrossRefGoogle Scholar
  33. Liu YW, Pennathur S, Meinhart CD (2014) Electrophoretic mobility of a spherical nanoparticle in a nanochannel. Phys Fluids. doi: 10.1063/1.4901330 Google Scholar
  34. Liu YW, Pennathur S, Meinhart CD (2016) Electrophoretic mobility of spherical particles in bounded domain. J Colloids Interface Sci 461:32–38. doi: 10.1016/j.jcis.2015.08.039 CrossRefGoogle Scholar
  35. Loewenberg M, Davis RH (1995) Near-contact electrophoretic particle motion. J Fluid Mech 288:103. doi: 10.1017/S002211209500108X CrossRefzbMATHGoogle Scholar
  36. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, HobokenCrossRefGoogle Scholar
  37. Menard LD, Ramsey JM (2013) Electrokinetically-driven transport of DNA through focused ion beam milled nano fluidic channels. Anal Chem 85:1146–1153CrossRefGoogle Scholar
  38. Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: top–down vs. bottom–up—a review. Lab Chip 5:492–500. doi: 10.1039/b416951d CrossRefGoogle Scholar
  39. Miloh T, Boymelgreen A (2014) Travelling wave dipolophoresis of ideally polarizable nano-particles with overlapping electric double layers in cylindrical pores. Phys Fluids. doi: 10.1063/1.4884956 Google Scholar
  40. Movahed S, Li D (2012) Electrokinetic motion of a rectangular nanoparticle in a nanochannel. J Nanoparticle Res 14:1–15. doi: 10.1007/s11051-012-1032-0 CrossRefGoogle Scholar
  41. Napoli M, Eijkel JCT, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985. doi: 10.1039/b917759k CrossRefGoogle Scholar
  42. Napoli M, Atzberger P, Pennathur S (2011) Experimental study of the separation behavior of nanoparticles in micro- and nanochannels. Microfluid Nanofluidics 10:69–80. doi: 10.1007/s10404-010-0647-7 CrossRefGoogle Scholar
  43. Nedelcu S, Sommer JU (2014) Charge inversion effects in electrophoresis of polyelectrolytes in the presence of multivalent counterions and transversal electric fields. Polymers (Basel) 6:2942–2960. doi: 10.3390/polym6122942 CrossRefGoogle Scholar
  44. O’Brien RW, Hunter RJ (1981) The electrophoretic mobility of large colloidal particles. Can J Chem 59:1878–1887. doi: 10.1139/v81-280 CrossRefGoogle Scholar
  45. O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 Mol Chem Phys 74:1607–1626CrossRefGoogle Scholar
  46. Ohshima H (1994) A simple expression for henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloids Interface Sci 168:269–271CrossRefGoogle Scholar
  47. Ohshima H (1995a) Electrophoresis of soft particles. Adv Colloids Interface Sci 62:189. doi: 10.1016/0001-8686(95)00279-Y CrossRefGoogle Scholar
  48. Ohshima H (1995b) Electrophoretic mobility of soft particles. Colloids Surf A Physicochem Eng Asp 103:249–255. doi: 10.1016/0927-7757(95)03293-M CrossRefGoogle Scholar
  49. Ohshima H (1996) Henry’s function for electrophoresis of a cylindrical colloidal particle. J Colloids Interface Sci 180:299–301. doi: 10.1006/jcis.1996.0305 CrossRefGoogle Scholar
  50. Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2 Mol Chem Phys 79:1613–1628CrossRefGoogle Scholar
  51. Peng R, Li D (2015) Fabrication of nanochannels on polystyrene surface. Biomicrofluidics 9:24117. doi: 10.1063/1.4918643 CrossRefGoogle Scholar
  52. Peng R, Li D (2016a) Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. Lab Chip 16:3767–3776. doi: 10.1039/C6LC00867D CrossRefGoogle Scholar
  53. Peng R, Li D (2016b) Electroosmotic flow in single PDMS nanochannels. Nanoscale. doi: 10.1039/C6NR02937J Google Scholar
  54. Plesa C, Verschueren D, Pud S et al (2016) Direct observation of DNA knots using a solid-state nanopore. Nat Nanotechnol. doi: 10.1038/nnano.2016.153 Google Scholar
  55. Qian S, Joo SW, Hou W, Zhao X (2008) electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube. Langmuir 24(10):5332–5340CrossRefGoogle Scholar
  56. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189. doi: 10.1038/nature13118 CrossRefGoogle Scholar
  57. Schnitzer O, Frankel I, Yariv E (2014) Electrophoresis of bubbles. J Fluid Mech 753:49–79. doi: 10.1017/jfm.2014.350 MathSciNetCrossRefzbMATHGoogle Scholar
  58. Semenov I, Raafatnia S, Sega M et al (2013) Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Phys Rev E Stat Nonlinear Soft Matter Phys 87:1–7. doi: 10.1103/PhysRevE.87.022302 CrossRefGoogle Scholar
  59. Shugai A, Carnie S (1999) Electrophoretic motion of a spherical particle with a thick double layer in bounded flows. J Colloids Interface Sci 213:298–315. doi: 10.1006/jcis.1999.6143 CrossRefGoogle Scholar
  60. Shugai AA, Carnie SL, Chan DYC, Anderson JL (1997) Electrophoretic motion of two spherical particles with thick double layers. J Colloids Interface Sci 371:357–371CrossRefGoogle Scholar
  61. Swan JW, Furst EM (2012) A simpler expression for Henry’s function describing the electrophoretic mobility of spherical colloids. J Colloids Interface Sci 388:92–94. doi: 10.1016/j.jcis.2012.08.026 CrossRefGoogle Scholar
  62. Tseng S, Lin C, Hsu J, Yeh L (2013) Electrophoresis of deformable polyelectrolytes in a nanofluidic channel. Langmuir 29:2446–2454CrossRefGoogle Scholar
  63. Uba FI, Pullagurla SR, Sirasunthorn N et al (2015) Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels. Analyst 140:113–126. doi: 10.1039/c4an01439a CrossRefGoogle Scholar
  64. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077. doi: 10.1002/elps.1150181133 CrossRefGoogle Scholar
  65. Wang LJ, Keh HJ (2009) Electrophoresis of a cylindrical particle with a nonuniform zeta potential distribution parallel to a charged plane wall. J Phys Chem C 113:12790–12798. doi: 10.1021/jp903077e CrossRefGoogle Scholar
  66. Wang YC, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299. doi: 10.1021/ac050321z CrossRefGoogle Scholar
  67. Wang N, Yee CP, Chen YY et al (2013) Electrophoresis of a pH-regulated zwitterionic nanoparticle in a pH-regulated zwitterionic capillary. Langmuir 29:7162–7169. doi: 10.1021/la400946s CrossRefGoogle Scholar
  68. Weerakoon-Ratnayake KM, Uba FI, Oliver-Calixte NJ, Soper SA (2016) Electrophoretic separation of single particles using nanoscale thermoplastic columns. Anal Chem 88:3569–3577. doi: 10.1021/acs.analchem.5b04065 CrossRefGoogle Scholar
  69. Wiersema P, Loeb A, Overbeek JT (1966) Calculation of the electrophoretic mobility of a spherical colloid particle. J Colloids Interface Sci 22:78–99. doi: 10.1016/0021-9797(66)90069-5 CrossRefGoogle Scholar
  70. Xia D, Yan J, Hou S (2012) Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small 8:2787–2801. doi: 10.1002/smll.201200240 CrossRefGoogle Scholar
  71. Xuan X, Ye C, Li D (2005) Near-wall electrophoretic motion of spherical particles in cylindrical capillaries. J Colloids Interface Sci 289:286–290. doi: 10.1016/j.jcis.2005.03.045 CrossRefGoogle Scholar
  72. Xuan X, Raghibizadeh S, Li D (2006) Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. J Colloids Interface Sci 296:743–748. doi: 10.1016/j.jcis.2005.09.039 CrossRefGoogle Scholar
  73. Yasui T, Rahong S, Motoyama K et al (2013) DNA manipulation and separation in sublithographic-scale nanowire array. ACS Nano 7:3029–3035CrossRefGoogle Scholar
  74. Yoon BJ, Kim S (1989) Electrophoresis of spheroidal particles. J Colloids Interface Sci 128:275–288. doi: 10.1016/0021-9797(89)90405-0 CrossRefGoogle Scholar
  75. Zhang X, Hsu WL, Hsu JP, Tseng S (2009) Diffusiophoresis of a soft spherical particle in a spherical cavity. J Phys Chem B 113:8646–8656. doi: 10.1021/jp9014417 CrossRefGoogle Scholar
  76. Zhou K, Perry JM, Jacobson SC (2011) Transport and sensing in nanofluidic devices. Annu Rev Anal Chem 4:321–341. doi: 10.1146/annurev-anchem-061010-113938 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations