Precise capillary flow for paper-based viscometry

  • Emanuel Elizalde
  • Raúl Urteaga
  • Claudio L. A. Berli
Research Paper


The imbibition dynamics of aqueous solutions in paper substrates determines the performance of all the operations integrated in analytical paper-based devices. In particular, an accurate control of the flow rate is required for quantitative analysis such as viscometry. This work experimentally investigates paper filling dynamics in order to find a strategy to improve the precision and predictability of the imbibition process. The effect of performing successive wetting–drying cycles on the same strips is explored, since we have discovered that, after around four cycles, the filling kinematics is highly repetitive, and data closely follow the theoretical Lucas–Washburn model. It is found that the cyclic process enables quantitative assessment of the filling dynamics with uncertainties lower than 0.8 %. Implementing this protocol, paper-based viscometry with a precision around 1 % was experimentally demonstrated. This knowledge is of interest to develop paper-based microfluidic devices with a new level of precision.


Paper-based microfluidics Capillary filling Viscometry 



The authors thank the financial support received from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional del Litoral (UNL), Argentina.

Supplementary material

10404_2016_1800_MOESM_ESM.pdf (2.1 mb)
Supplementary material 1 (pdf 2101 KB)


  1. Alava M, Dube M, Rost M (2004) Imbibition in disordered media. Adv Phys 53(2):83–175. doi: 10.1080/00018730410001687363 CrossRefGoogle Scholar
  2. Berli CLA, Urteaga R (2014) Asymmetric capillary filling of non-newtonian power law fluids. Microfluid Nanofluidics 17(6):1079–1084. doi: 10.1007/s10404-014-1388-9 CrossRefGoogle Scholar
  3. Bohm A, Carstens F, Trieb C, Schabel S, Biesalski M (2014) Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid Nanofluidics 16(5):789–799. doi: 10.1007/s10404-013-1324- CrossRefGoogle Scholar
  4. Cai J, Yu B, Zou M, Luo L (2010) Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 24(3):1860–1867. doi: 10.1021/ef901413p CrossRefGoogle Scholar
  5. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13:2397–2404. doi: 10.1039/C3LC50072A CrossRefGoogle Scholar
  6. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41. doi: 10.1021/ac503968p CrossRefGoogle Scholar
  7. Connelly JT, Rolland JP, Whitesides GM (2015) paper machine for molecular diagnostics. Anal Chem 87(15):7595–7601. doi: 10.1021/acs.analchem.5b00411 CrossRefGoogle Scholar
  8. Elizalde E, Urteaga R, Berli CLA (2015) Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15:2173–2180. doi: 10.1039/C4LC01487A CrossRefGoogle Scholar
  9. Fassenden RW (1928) The viscosity and surface tension of dispersions of sucrose, lactose, skim milk powder, and butterfat.
  10. Hong S, Kim W (2015) Dynamics of water imbibition through paper channels with wax boundaries. Microfluid Nanofluidics 19(4):845–853. doi: 10.1007/s10404-015-1611-3 MathSciNetCrossRefGoogle Scholar
  11. Jahanshahi-Anbuhi S, Henry A, Leung V, Sicard C, Pennings K, Pelton R, Brennan JD, Filipe CD (2014) Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip 14(1):229–236CrossRefGoogle Scholar
  12. Joung YS, Figliuzzi BM, Buie CR (2014) Design of capillary flows with functionally graded porous titanium oxide films fabricated by anodization instability. J Colloid Interface Sci 423:143–150. doi: 10.1016/j.jcis.2014.02.032 CrossRefGoogle Scholar
  13. Lewis GG, Robbins JS, Phillips ST (2013) Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal Chem 85(21):10432–10439. doi: 10.1021/ac402415v CrossRefGoogle Scholar
  14. Li H, Han D, Pauletti G, Steckl A (2014) Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 14(20):4035–4041CrossRefGoogle Scholar
  15. Liu Z, Hu J, Zhao Y, Qu Z, Xu F (2015) Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Appl Therm Eng 88: 280–287.  10.1016/j.applthermaleng.2014.09.057,
  16. Lucas R (1918) Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten. Colloid Polym Sci 23(1):15–22Google Scholar
  17. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  18. Masoodi R, Pillai KM (2010) Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J 56(9):2257–2267Google Scholar
  19. Noh H, Phillips ST (2010a) Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem 82(19):8071–8078CrossRefGoogle Scholar
  20. Noh H, Phillips ST (2010b) Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal Chem 82(10):4181–4187CrossRefGoogle Scholar
  21. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, New YorkMATHGoogle Scholar
  22. Shou D, Ye L, Fan J, Fu K, Mei M, Wang H, Chen Q (2014) Geometry-induced asymmetric capillary flow. Langmuir 30(19):5448–5454. doi: 10.1021/la500479e CrossRefGoogle Scholar
  23. Shou D, Fan J (2015) The fastest capillary penetration of power-law fluids. Chem Eng Sci 137: 583–589.  10.1016/j.ces.2015.07.009,
  24. Songok J, Salminen P, Toivakka M (2014) Temperature effects on dynamic water absorption into paper. J Colloid Interface Sci 418:373–377. doi: 10.1016/j.jcis.2013.12.017 CrossRefGoogle Scholar
  25. Songok J, Toivakka M (2016) Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluid Nanofluidics 20(4):1–9CrossRefGoogle Scholar
  26. Swindells JF, Snyder CF, R.C.H, Golden PE (1958) Viscosities of sucrose solutions at various temperatures: Tables of recalculated values. Technical report, National Bureau of StandardsGoogle Scholar
  27. Wang X, Hagen JA, Papautsky I (2013) Paper pump for passive and programmable transport. Biomicrofluidics 7(1):014,107. doi: 10.1063/1.4790819 CrossRefGoogle Scholar
  28. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273CrossRefGoogle Scholar
  29. Xiao J, Stone HA, Attinger D (2012) Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium. Langmuir 28(9):4208–4212. doi: 10.1021/la204474f CrossRefGoogle Scholar
  30. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210. doi: 10.1039/c3lc50169h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emanuel Elizalde
    • 1
  • Raúl Urteaga
    • 1
  • Claudio L. A. Berli
    • 2
  1. 1.IFIS-LitoralUNL-CONICETSanta FeArgentina
  2. 2.INTECUNL-CONICETSanta FeArgentina

Personalised recommendations