Microfluidics and Nanofluidics

, 20:134 | Cite as

Hydrodynamic focusing for microfluidic impedance cytometry: a system integration study

Research Paper

Abstract

We present the first in-depth system integration study of in-plane hydrodynamic focusing in a microfluidic impedance cytometry lab-on-a-chip. The method relies on constricting the detection volume with non-conductive sheath flows and characterizing particles or cells based on changes in impedance. This approach represents an avenue of overcoming current limitations in sensitivity with translating cytometers to the point of care for rapid, low-cost blood analysis. While examples of integrated devices are present in the literature, no systematic study of the interplay between hydrodynamics and electrodynamics has been carried out as of yet. We develop analytical and numerical models to describe the impedimetric response of the sensor as a function of cellular characteristics, physical flow properties, and device geometry. We fabricate a working prototype lab-on-a-chip for experimental validation using latex particles. We find that ionic diffusion can be a critical limiting factor even at high Péclet number. Moreover, we explore geometric variations, revealing that the ionic diffusion-related distance between the center of the hydrodynamic focusing junction and the impedance measurement electrodes plays a dominant role. With our device, we demonstrate over fivefold enhancement in impedance signals and population separation with in-plane hydrodynamic focusing. It is only through such in-depth system studies, in both models and experiments, that optimal utilization of microsystem capabilities becomes possible.

Keywords

Microsystem integration Microfluidics Impedance cytometry Hydrodynamic focusing Diffusion 

List of symbols

⌀ (µm)

Cell diameter

VA (µm)

Virtual aperture width

Qs, Qf (µl/h)

Flow rates of sample and focus streams

FR (1)

Flow ratio (sample flow over total flow)

Z, Zempty (Ω)

Impedance, empty channel impedance

Z| (%)

Relative change in impedance (impedance signal)

Δ|ΔZ| (%)

Population separation

δ (%)

Population spread

w, wfc (µm)

Center (sample) and focus channel width

h (µm)

Channel height

l, g (µm)

Microelectrode length and gap

d (µm)

Distance from focus junction to electrode

med, el, DI, ion, cell, mem, cyt

Subscripts denoting: medium, electrolyte component of medium, DI water component of medium, ions in the medium, cells in the medium, membrane component of cell, cytosol component of cell

P, V (µm3)

Particle and electrical interaction volume

Π (1)

Volume fraction of particle in electrical interaction volume

σ (S/m)

Conductivity

ε (F/m)

Permittivity

C (1)

Normalized concentration

IS (M)

Ionic strength

λD (µm)

Debye length

Coffset, Camp (1)

Concentration profile fit parameters

sp, ss (µm)

Concentration profile fit parameters

f, fs (Hz)

Signal and sampling frequency

Pe, Re (1)

Péclet number, Reynolds number

RMSE (%)

Root-mean-square error

Notes

Acknowledgments

The authors would like to thank the Robert W. Deutsch Foundation and the Maryland Innovation Initiative for financial support. The authors also appreciate the support of the Maryland NanoCenter and its FabLab. The authors wish to thank Robert Dietrich for useful discussions.

Supplementary material

10404_2016_1798_MOESM1_ESM.pdf (463 kb)
Supplementary material 1 (PDF 462 kb)
10404_2016_1798_MOESM2_ESM.nb (70 kb)
Supplementary material 2 (NB 71 kb)

References

  1. Analog Devices (2005) AD5933 Impedance converter network analyzer. http://www.analog.com/en/products/rf-microwave/direct-digital-synthesis-modulators/ad5933.html
  2. Asami K, Hanai T, Koizumi N (1980) Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn J Appl Phys 19:359–365. doi: 10.1143/JJAP.19.359 CrossRefGoogle Scholar
  3. Ateya DA, Erickson JS, Howell PB Jr et al (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391:1485–1498. doi: 10.1007/s00216-007-1827-5 CrossRefGoogle Scholar
  4. Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev 56:1565–1586. doi: 10.1016/j.addr.2004.03.002 CrossRefGoogle Scholar
  5. Ben-Yoav H, Dykstra PH, Gordonov T et al (2014) A microfluidic-based electrochemical biochip for label-free DNA hybridization analysis. J Vis Exp. doi: 10.3791/51797 Google Scholar
  6. Berg HC (1993) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  7. Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11:407–412. doi: 10.1039/c0lc00099j CrossRefGoogle Scholar
  8. Chen J, Xue C, Zhao Y et al (2015) Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. Int J Mol Sci 16:9804–9830. doi: 10.3390/ijms16059804 CrossRefGoogle Scholar
  9. Cheung K, Gawad S, Renaud P (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytom A 65A:124–132. doi: 10.1002/cyto.a.20141 CrossRefGoogle Scholar
  10. Cheung KC, Di Berardino M, Schade-Kampmann G et al (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A:648–666. doi: 10.1002/cyto.a.20910 CrossRefGoogle Scholar
  11. DeBlois RW, Bean CP (1970) Counting and sizing of submicron particles by the resistive pulse technique. Rev Sci Instrum 41:909–916. doi: 10.1063/1.1684724 CrossRefGoogle Scholar
  12. Evander M, Ricco AJ, Morser J et al (2013) Microfluidic impedance cytometer for platelet analysis. Lab Chip 13:722–729. doi: 10.1039/c2lc40896a CrossRefGoogle Scholar
  13. Frankowski M, Simon P, Bock N et al (2015) Simultaneous optical and impedance analysis of single cells: a comparison of two microfluidic sensors with sheath flow focusing. Eng Life Sci 15:286–296. doi: 10.1002/elsc.201400078 CrossRefGoogle Scholar
  14. Gawad S, Schild L, Renaud P (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82. doi: 10.1039/b103933b CrossRefGoogle Scholar
  15. Gawad S, Cheung K, Seger U et al (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251. doi: 10.1039/b313761a CrossRefGoogle Scholar
  16. Golden JP, Justin GA, Nasir M, Ligler FS (2012) Hydrodynamic focusing—a versatile tool. Anal Bioanal Chem 402:325–335. doi: 10.1007/s00216-011-5415-3 CrossRefGoogle Scholar
  17. Han X, van Berkel C, Gwyer J et al (2012) Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry. Anal Chem 84:1070–1075. doi: 10.1021/ac202700x CrossRefGoogle Scholar
  18. Holmes D, Pettigrew D, Reccius CH et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9:2881–2889. doi: 10.1039/b910053a CrossRefGoogle Scholar
  19. Johnson AM, Sadoway DR, Cima MJ, Langer R (2005) Design and testing of an impedance-based sensor for monitoring drug delivery. J Electrochem Soc 152:H6–H11. doi: 10.1149/1.1824045 CrossRefGoogle Scholar
  20. Jung W, Han J, Choi J-W, Ahn CH (2015) Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron Eng 132:46–57. doi: 10.1016/j.mee.2014.09.024 CrossRefGoogle Scholar
  21. Kottke-Marchant K, Davis B (2012) Laboratory hematology practice. Wiley, ChichesterCrossRefGoogle Scholar
  22. Kunstmann-Olsen C, Hoyland JD, Rubahn H-G (2012) Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluid Nanofluid 12:795–803. doi: 10.1007/s10404-011-0923-1 CrossRefGoogle Scholar
  23. Lee G-B, Chang C-C, Huang S-B, Yang R-J (2006) The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16:1024–1032. doi: 10.1088/0960-1317/16/5/020 CrossRefGoogle Scholar
  24. Lide DR, Kehiaian HV (1994) CRC handbook of thermophysical and thermochemical data. CRC Press, Boca RatonGoogle Scholar
  25. Mansor MA, Ahmad MR (2015) Single cell electrical characterization techniques. Int J Mol Sci 16:12686–12712. doi: 10.3390/ijms160612686 CrossRefGoogle Scholar
  26. Meyer MT, Subramanian S, Kim YW et al (2015) Multi-depth valved microfluidics for biofilm segmentation. J Micromech Microeng 25:95003. doi: 10.1088/0960-1317/25/9/095003 CrossRefGoogle Scholar
  27. Morgan H, Sun T, Holmes D et al (2007) Single cell dielectric spectroscopy. J Phys Appl Phys 40:61–70. doi: 10.1088/0022-3727/40/1/S10 CrossRefGoogle Scholar
  28. Nasir M, Price DT, Shriver-Lake LC, Ligler F (2010) Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor. Lab Chip 10:2787–2795. doi: 10.1039/C005257D CrossRefGoogle Scholar
  29. Nasir M, Mott DR, Kennedy MJ et al (2011) Parameters affecting the shape of a hydrodynamically focused stream. Microfluid Nanofluid 11:119–128. doi: 10.1007/s10404-011-0778-5 CrossRefGoogle Scholar
  30. Nguyen J, Wei Y, Zheng Y et al (2015) On-chip sample preparation for complete blood count from raw blood. Lab Chip 15:1533–1544. doi: 10.1039/C4LC01251H CrossRefGoogle Scholar
  31. Nieuwenhuis JH, Kohl F, Bastemeijer J et al (2004) Integrated Coulter counter based on 2-dimensional liquid aperture control. Sens Actuat B Chem 102:44–50. doi: 10.1016/j.snb.2003.10.017 CrossRefGoogle Scholar
  32. Pitts E, Tabor BE (1970) Concentration dependence of electrolyte conductance. Part 2—comparison of experimental data with the Fuoss-Onsager and Pitts treatments. Trans Faraday Soc 66:693–707. doi: 10.1039/TF9706600693 CrossRefGoogle Scholar
  33. Rodriguez-Trujillo R, Mills CA, Samitier J, Gomila G (2007) Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid Nanofluid 3:171–176. doi: 10.1007/s10404-006-0113-8 CrossRefGoogle Scholar
  34. Rodriguez-Trujillo R, Castillo-Fernandez O, Garrido M et al (2008) High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture. Biosens Bioelectron 24:290–296. doi: 10.1016/j.bios.2008.04.005 CrossRefGoogle Scholar
  35. Shapiro HM (2003) Practical flow cytometry. Wiley, HobokenCrossRefGoogle Scholar
  36. Siggaard-Andersen O, Durst RA, Maas AHJ (1984) Physicochemical quantities and units in clinical chemistry with special emphasis on activities and activity coefficients (Recommendations 1983). Pure Appl Chem 56:567–594. doi: 10.1351/pac198456050567 CrossRefGoogle Scholar
  37. Sun T, Morgan H (2010) Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 8:423–443. doi: 10.1007/s10404-010-0580-9 CrossRefGoogle Scholar
  38. Sun T, Gawad S, Green NG, Morgan H (2007a) Dielectric spectroscopy of single cells: time domain analysis using Maxwell’s mixture equation. J Phys Appl Phys 40:1–8. doi: 10.1088/0022-3727/40/1/S01 CrossRefGoogle Scholar
  39. Sun T, Green NG, Gawad S, Morgan H (2007b) Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol 1:69–79. doi: 10.1049/iet-nbt:20070019 CrossRefGoogle Scholar
  40. Sun T, Green NG, Morgan H (2008) Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano 3:55–63. doi: 10.1142/S1793292008000800 CrossRefGoogle Scholar
  41. Sun T, Bernabini C, Morgan H (2010) Single-colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte microcapsules. Langmuir 26:3821–3828. doi: 10.1021/la903609u CrossRefGoogle Scholar
  42. van Berkel C, Gwyer JD, Deane S et al (2011) Integrated systems for rapid point of care (PoC) blood cell analysis. Lab Chip 11:1249–1255. doi: 10.1039/C0LC00587H CrossRefGoogle Scholar
  43. Watkins N, Venkatesan BM, Toner M et al (2009) A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab Chip 9:3177–3184. doi: 10.1039/B912214A CrossRefGoogle Scholar
  44. Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9:1–16. doi: 10.1007/s10404-010-0602-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thomas E. Winkler
    • 1
    • 2
  • Hadar Ben-Yoav
    • 3
  • Reza Ghodssi
    • 1
    • 2
  1. 1.MEMS Sensors and Actuators Laboratory (MSAL), Institute for Systems Research, Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  3. 3.Department of Biomedical EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations