Advertisement

Microfluidics and Nanofluidics

, 20:130 | Cite as

An individual addressable and latchable actuator array for microfluidic systems

  • Christiane Richter
  • Kai Sachsenheimer
  • Nico Keller
  • Tobias M. Nargang
  • Dorothea Helmer
  • Frederik Kotz
  • Bastian E. Rapp
Research Paper

Abstract

Microfluidic systems and applications are becoming more and more complex and therefore require a lot of individually addressable actuators and valves to guide the fluids inside the systems. In this paper, we present an actuator array based on a latchable phase change actuator, i.e. the solid/liquid phase change of the actuator medium is used to stabilize the two states of the actuator. The design of the actuator allows the individual control of a high number of actuators with only two external pressure lines. This is in contrast to conventional pressure-actuated membrane valves manufactured in soft elastomers such as PDMS (polydimethylsiloxane) which require increasing numbers of external pressure lines for a higher number of valves. First, we describe the general working principle of the actuator. The scalability of the actuator concept as well as the individual addressing is then demonstrated by means of two exemplary set-ups with four and twelve actuators. With the latter, we also show the suitability as a microvalve. We further characterized and optimized the response times of the actuator with respect to the heating power, the choice of the phase change medium as well as the volume of the actuator material used. We achieved switching times between the two stable states of the actuators in the range of 10 s.

Keywords

Actuator Phase change Microvalve Microfluidics Latchable 

Notes

Acknowledgments

This work was funded by the German Research Foundation (DFG), research Grant NE 1901/2-1.

References

  1. 3 M (2010) Fluorinert electronic liquid FC-40. Multimedia.3 m.com, 4Google Scholar
  2. Grover WH, Ivester RHC et al (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6(5):623–631CrossRefGoogle Scholar
  3. Kaigala GV, Hoang VN et al (2008) Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis. Lab Chip 8(7):1071–1078CrossRefGoogle Scholar
  4. Liu Y, Rauch CB et al (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74(13):3063–3070CrossRefGoogle Scholar
  5. Mosadegh B, Bersano-Begey T et al (2011) Next-generation integrated microfluidic circuits. Lab Chip 11(17):2813–2818CrossRefGoogle Scholar
  6. Neumann C, Voigt A et al (2013) Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. Microfluid Nanofluid 14(1–2):177–186CrossRefGoogle Scholar
  7. Ogden SL, Klintberg et al (2013) Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid Nanofluid :1–19Google Scholar
  8. Ogden S, Jonsson J et al (2012) A latchable high-pressure thermohydraulic valve actuator. Sens Actuators A: Phys 188:292–297CrossRefGoogle Scholar
  9. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39CrossRefGoogle Scholar
  10. Rapp BE, Voigt A et al (2012) Deposition of ultrathin parylene C films in the range of 18 to 142 nm: controlling the layer thickness and assessing the closeness of the deposited films. Thin Solid Films 520(15):4884–4888CrossRefGoogle Scholar
  11. Richter A, Kuckling D et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12(5):748–753CrossRefGoogle Scholar
  12. Sethu P, Mastrangelo C (2003) Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems. Sens Actuators A: Phys 104(3):283–289CrossRefGoogle Scholar
  13. Shaikh KA, Li SF et al (2008) Development of a latchable microvalve employing a low-melting-temperature metal alloy. J Microelectromech Syst 17(5):1195–1203CrossRefGoogle Scholar
  14. Thorsen T, Maerkl SJ et al (2002) Microfluidic large-scale integration. Science 298(5593):580–584CrossRefGoogle Scholar
  15. Unger MA, Chou HP et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116CrossRefGoogle Scholar
  16. Vyawahare S, Griffiths AD et al (2010) Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem Biol 17(10):1052–1065CrossRefGoogle Scholar
  17. Wilhelm E, Deshpande K et al (2015) Polysiloxane layers created by sol–gel and photochemistry: ideal surfaces for rapid, low-cost and high-strength bonding of epoxy components to polydimethylsiloxane. Lab Chip 15(7):1772–1782CrossRefGoogle Scholar
  18. Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18(4):860–867CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christiane Richter
    • 1
  • Kai Sachsenheimer
    • 1
  • Nico Keller
    • 1
  • Tobias M. Nargang
    • 1
  • Dorothea Helmer
    • 1
  • Frederik Kotz
    • 1
  • Bastian E. Rapp
    • 1
  1. 1.Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations