Evaporation-induced natural convection of a liquid slug of binary mixture inside a microchannel: effect of confinement

  • Tapan Kumar Pradhan
  • Pradipta Kumar PanigrahiEmail author
Research Paper


Both experimental and simulation studies have been carried out on internal convection of an evaporating liquid slug of aqueous NaCl solution inside a microcapillary. Effect of confinement due to the extended channel length beyond the interface of the liquid slug has been investigated by placing the liquid slug inside the microcapillary of different lengths. Micro-PIV technique has been used for measurement of velocity field inside the liquid slug. Simulation studies have been carried out using COMSOL Multiphysics software for reporting the evaporative flux distribution on the meniscus and the concentration field distribution inside the liquid slug. The combined experimental and simulation studies successfully explain the underlying flow physics. Evaporation from the liquid–air interface of the slug induces buoyancy-driven Rayleigh convection. Evaporative flux of the interface depends on the extended length of the microcapillary beyond the liquid slug. The presence of extended channel region beyond the meniscus suppresses the evaporation from the meniscus due to the absence of evaporation flux normal to the channel wall. Evaporation occurs primarily from only one meniscus when the slug is located at one end of a long channel. Evaporation occurs from both the menisci when both the menisci are directly exposed to the atmosphere. Evaporation from only one meniscus of a slug leads to one recirculation bubble inside the liquid slug, whereas evaporation from both the menisci leads to two recirculation bubbles inside the liquid slug. Liquid slug with asymmetric extended channel length beyond the liquid slug interface leads to asymmetric evaporative flux, concentration field distribution and recirculation bubble size. The extended channel length beyond an evaporating liquid slug can influence/control the performance of a digital microfluidic system/device.


Evaporating slug Evaporating meniscus Micro-PIV Rayleigh convection 



Authors acknowledge the Department of Science and Technology, Government of India, for the financial support.

Supplementary material

10404_2016_1782_MOESM1_ESM.pdf (34 kb)
Supplementary material 1 (pdf 34 KB)

Supplementary material 2 (mp4 4939 KB)

Supplementary material 3 (mp4 4447 KB)


  1. Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF (2004) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil Trans R Soc Lond A 362:1087–1104. doi: 10.1098/rsta.2003.1364 CrossRefGoogle Scholar
  2. Buffone C, Safiane K, Christy JRE (2005) Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry. Phys Fluids 17(052):104. doi: 10.1063/1.1901688 zbMATHGoogle Scholar
  3. Burns JR, Ramshaw C (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:10–15. doi: 10.1039/B102818A CrossRefGoogle Scholar
  4. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829. doi: 10.1038/39827 CrossRefGoogle Scholar
  5. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765. doi: 10.1103/PhysRevE.62.756 CrossRefGoogle Scholar
  6. Dhavaleswarapu HK, Chamarthy P, Garimella SV (2007) Experimental investigation of steady buoyant-thermocapillary convection near an evaporating meniscus. Phys Fluids 19(082):103. doi: 10.1063/1.2752477 zbMATHGoogle Scholar
  7. Dugas V, Broutin J, Souteyrand E (2005) Droplet evaporation study applied to DNA chip manufacturing. Langmuir 21:9130–9136. doi: 10.1021/la050764y CrossRefGoogle Scholar
  8. Farley RW, Schechter RS (1966) Retardation of surface velocities by surfactants. Chem Eng Sci 21:1079–1093. doi: 10.1016/0009-2509(66)85103-5 CrossRefGoogle Scholar
  9. Gozzola D, Scarselli EF, Guerrieri R (2009) 3D visualization of convection patterns in lab-on-chip with open microfluidic outlet. Microfluid Nanofluid 7:659–668. doi: 10.1007/s10404-009-0426-5 CrossRefGoogle Scholar
  10. Gunther A, Khan SA, Thalmann M, Jensen FTKF (2004) Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 4:278–286. doi: 10.1039/B403982C CrossRefGoogle Scholar
  11. Haynes WM (2012) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  12. Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106:1334–1344. doi: 10.1021/jp0118322 CrossRefGoogle Scholar
  13. Hu H, Larson RG (2005) Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21:3972–3980. doi: 10.1021/la0475270 CrossRefGoogle Scholar
  14. Jahnisch K, Hessel V, Lowe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446. doi: 10.1002/anie.200300577 CrossRefGoogle Scholar
  15. Kang KH, Lim HC, Lee HW, Lee SJ (2013) Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Phys Fluids 25(042):001. doi: 10.1063/1.4797497 Google Scholar
  16. Kashid MN, Gerlach I, Goetz S, Franzke J, Acker JF, Platte F, Agar DW, Turek S (2005) Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor. Ind Eng Chem Res 44:5003–5010. doi: 10.1021/ie0490536 CrossRefGoogle Scholar
  17. Kestin J, Khalifa HE, Correia RJ (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range \(20-150^0 c\) and the pressure range 0.1-35 MPa. J Phys Chem Ref Data 10:71–87. doi: 10.1063/1.555641 CrossRefGoogle Scholar
  18. Kundu PK, Cohen IM (2008) Fluid mechanics. Academic Press, CambridgeGoogle Scholar
  19. Lee SJ, Hong J, Choi YS (2014) Evaporation-induced flows inside a confined droplet of diluted saline solution. Langmuir 30:7710–7715. doi: 10.1021/la501401y CrossRefGoogle Scholar
  20. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197. doi: 10.1109/84.846699 CrossRefGoogle Scholar
  21. Lu HW, Bottausci F, Fowler JD, Bertozzi AL, Meinhart C, Kim CJ (2008) A study of EWOD-driven droplets by PIV investigation. Lab Chip 8:456–461. doi: 10.1039/b717141b CrossRefGoogle Scholar
  22. Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurements of a microchannel flow. Exp Fluids 27:414–419. doi: 10.1007/s003480050366 CrossRefGoogle Scholar
  23. Pitzer KS, Pelper JC (1984) Thermodynamic properties of aqueous sodium chloride solutions. J Phys Chem Ref Data 13:1–102. doi: 10.1063/1.555709 CrossRefGoogle Scholar
  24. Pradhan T, Asfer M, Panigrahi PK (2012) Droplet hydrodynamics during lysozyme protein crystallization. Phys Rev E 8(051):602. doi: 10.1103/PhysRevE.86.051602 Google Scholar
  25. Pradhan TK, Panigrahi PK (2015a) Deposition pattern of interacting droplets. Colloids Surf A 482:562–567. doi: 10.1016/j.colsurfa.2015.07.013 CrossRefGoogle Scholar
  26. Pradhan TK, Panigrahi PK (2015b) Thermocapillary convection inside a stationary sessile water droplet on a horizontal surface with an imposed temperature gradient. Exp Fluids 56:178. doi: 10.1007/s00348-015-2051-2 CrossRefGoogle Scholar
  27. Pradhan TK, Panigrahi PK (2016) Influence of an adjacent droplet on fluid convection inside an evaporating droplet of binary mixture. Colloids Surf A 500:154–165. doi: 10.1016/j.colsurfa.2016.03.073 CrossRefGoogle Scholar
  28. Raben JS, Klein SA, Posner JD, Vlachos PP (2013) Improved accuracy of time-resolved micro-particle image velocimetry using phase-correlation and confocal microscopy. Microfluid Nanofluid 14:431–444. doi: 10.1007/s10404-012-1062-z CrossRefGoogle Scholar
  29. Riquelme R, Lira I, Lopez CP, Rayas JA, Vera RR (2007) Interferometric measurement of a diffusion coefficient: comparison of two methods and uncertainty analysis. J Phys D Appl Phys 40:2769–2776. doi: 10.1088/0022-3727/40/9/015 CrossRefGoogle Scholar
  30. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocity system for microfluidics. Exp Fluids 25:316–319. doi: 10.1007/s003480050235 CrossRefGoogle Scholar
  31. Savino R, Fico S (2004) Transient Marangoni convection in hanging evaporating drops. Phys Fluids 16:3738–3754. doi: 10.1063/1.1772380 CrossRefzbMATHGoogle Scholar
  32. Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75(016):601. doi: 10.1088/0034-4885/75/1/016601 Google Scholar
  33. Sobac B, Brutin D (2011) Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation. Langmuir 27:14,999–15,007. doi: 10.1021/la203681j CrossRefGoogle Scholar
  34. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction network in time. Angew Chem Int Ed 42:768–772. doi: 10.1002/anie.200390203 CrossRefGoogle Scholar
  35. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidcs channels. Angew Chem Int Ed 45:7336–7356. doi: 10.1002/anie.200601554 CrossRefGoogle Scholar
  36. Strook AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651. doi: 10.1126/science.1066238 CrossRefGoogle Scholar
  37. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. doi: 10.1039/B715524G CrossRefGoogle Scholar
  38. Thulasidas TC, Abraham MA, Cerro RL (1997) Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chem Eng Sci 52:2947–2962. doi: 10.1016/S0009-2509(97)00114-0 CrossRefGoogle Scholar
  39. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19:9127–9133. doi: 10.1021/la030090w CrossRefGoogle Scholar
  40. Watts P, Haswell SJ (2003) Microfluidics combinatorial chemistry. Curr Opin Chem Biol 7:380–387. doi: 10.1016/S1367-5931(03)00050-4 CrossRefGoogle Scholar
  41. Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246. doi: 10.1039/B313866F CrossRefGoogle Scholar
  42. Wu TC, Yang YM, Maa JR (2000) Surfactant-induced retardation of the thermocapillary flow at a gas/liquid interface. Int Comm Heat Transf 27:655–666. doi: 10.1016/S0735-1933(00)00147-0 CrossRefGoogle Scholar
  43. Zheng B, Tice JD, Ismagilov RF (2004a) Formation of arrayed droplets by soft lithography and two-phase fluid flow, and application in protein crystallization. Adv Mater 16:1365–1368. doi: 10.1002/adma.200400590 CrossRefGoogle Scholar
  44. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004b) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-Ray diffraction. Angew Chem Int Ed 43:2508–2511. doi: 10.1002/anie.200453974 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tapan Kumar Pradhan
    • 1
  • Pradipta Kumar Panigrahi
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations