A microfluidic platform with permeable walls for the analysis of vascular and extravascular mass transport

  • C. Manneschi
  • R. C. Pereira
  • G. Marinaro
  • A. Bosca
  • M. Francardi
  • P. Decuzzi
Research Paper


The interface between the blood pool and the extravascular matrix is fundamental in regulating the transport of molecules, nanoparticles and cells under physiological and pathological conditions. In this work, a microfluidic chip is presented comprising two parallel microchannels connected laterally via an array of high aspect ratio micropillars, constituting the permeable vascular membrane. A double-step lithographic process combined with a replica molding approach is employed to realize 80 different arrays of micropillars exhibiting three cross-sectional geometries (rectangular, elliptical and curved); two orientations (normal and parallel) with respect to the flow; and a variety of width and gap sizes, respectively, ranging from 10 to 20 μm and 2 to 5 μm. As compared to conventional rectangular structures, the curved pillars provide higher bending stiffness, lower adhesive interactions, and smaller intra-channel separation distances. Specifically, 10-μm-wide curved pillars, laying parallel to the flow, offered the highest mechanical stability. To assess vascular permeability, the extravascular channel was filled with a hyaluronic acid hydrogel, while fluorescent Dextran molecules and calibrated polystyrene beads were injected in the vascular channel. Membrane permeability was observed to reduce with the molecular weight of Dextran and diameter of the beads, ranging from about 6 × 10−5 to 2 × 10−5 cm/s for 40 and 250 kDa Dextran and up to zero for 1.5 μm beads. The presented data demonstrate the potential of the proposed microfluidic chip for analyzing the vascular and extravascular mass transport, over multiple spatial and temporal scales, in a variety of diseases involving differential permeation across vascular walls.


Vascular interface Permeable walls Transport Microfabrication Microfluidic Extravascular matrix 



This project was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 616695 and by the AIRC Investigator Grant 2015 Id. 17664.

Supplementary material

10404_2016_1775_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1215 kb)
10404_2016_1775_MOESM2_ESM.avi (1.9 mb)
Supplementary material 2 (AVI 1894 kb)
10404_2016_1775_MOESM3_ESM.avi (2 mb)
Supplementary material 3 (AVI 1999 kb)
10404_2016_1775_MOESM4_ESM.avi (2.9 mb)
Supplementary material 4 (AVI 2974 kb)
10404_2016_1775_MOESM5_ESM.avi (3.9 mb)
Supplementary material 5 (AVI 4017 kb)


  1. Abaci HE, Gledhill K, Guo ZY, Christiano AM, Shuler ML (2015) Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip 15:882–888. doi: 10.1039/c4lc00999a CrossRefGoogle Scholar
  2. Aryal S, Key J, Stigliano C, Ananta JS, Zhong M, Decuzzi P (2013) Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Biomaterials 34:7725–7732. doi: 10.1016/j.biomaterials.2013.07.003 CrossRefGoogle Scholar
  3. Boesel LF, Greiner C, Arzt E, del Campo A (2010) Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv Mater 22:2125–2137. doi: 10.1002/adma.200903200 CrossRefGoogle Scholar
  4. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (mu BBB). Lab Chip 12:1784–1792. doi: 10.1039/c2lc40094d CrossRefGoogle Scholar
  5. Chen HC (2005) Boyden chamber assay. Methods Mol Biol 294:15–22Google Scholar
  6. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134. doi: 10.1038/nrc3004 CrossRefGoogle Scholar
  7. Griep LM et al (2013) BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15:145–150. doi: 10.1007/s10544-012-9699-7 CrossRefGoogle Scholar
  8. Hamza B, Irimia D (2015) Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab Chip 15:2625–2633. doi: 10.1039/c5lc00245a CrossRefGoogle Scholar
  9. Huh D et al (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159147. doi: 10.1126/scitranslmed.3004249 CrossRefGoogle Scholar
  10. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664. doi: 10.1038/nrclinonc.2010.139 CrossRefGoogle Scholar
  11. Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10:36–42. doi: 10.1039/b907515a CrossRefGoogle Scholar
  12. Jung K et al (2013) Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 112:891–899. doi: 10.1161/CIRCRESAHA.111.300484 CrossRefGoogle Scholar
  13. Kang H, Cancel LM, Tarbell JM (2014) Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers. Atherosclerosis 233:682–690. doi: 10.1016/j.atherosclerosis.2014.01.056 CrossRefGoogle Scholar
  14. Key J et al (2015) Soft Discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9:11628–11641. doi: 10.1021/acsnano.5b04866 MathSciNetCrossRefGoogle Scholar
  15. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122. doi: 10.1038/nm.2072 CrossRefGoogle Scholar
  16. Kim Y et al (2014) Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci USA 111:1078–1083. doi: 10.1073/pnas.1322725111 CrossRefGoogle Scholar
  17. Lamberti G, Prabhakarpandian B, Garson C, Smith A, Pant K, Wang B, Kiani MF (2014) Bioinspired microfluidic assay for in vitro modeling of leukocyte–endothelium interactions. Anal Chem 86:8344–8351. doi: 10.1021/ac5018716 CrossRefGoogle Scholar
  18. Lee PJ, Hung PJ, Lee LP (2007) An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 97:1340–1346. doi: 10.1002/bit.21360 CrossRefGoogle Scholar
  19. Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, Huh D (2015) Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern-Fetal Neonatal Med. doi: 10.3109/14767058.2015.1038518 Google Scholar
  20. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689. doi: 10.1038/nri2156 CrossRefGoogle Scholar
  21. Libby P, Ridker PM, Hansson GK, Leducq Transatlantic Network on A (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138. doi: 10.1016/j.jacc.2009.09.009 CrossRefGoogle Scholar
  22. Mathura RA, Russell-Puleri S, Cancel LM, Tarbell JM (2015) Hydraulic conductivity of smooth muscle cell-initiated arterial cocultures. Ann Biomed Eng. doi: 10.1007/s10439-015-1421-5 Google Scholar
  23. Menon NV, Chuah YJ, Phey S, Zhang Y, Wu Y, Chan V, Kang Y (2015) Microfluidic assay to study the combinatorial impact of substrate properties on mesenchymal stem cell migration. ACS Appl Mater Interfaces 7:17095–17103. doi: 10.1021/acsami.5b03753 CrossRefGoogle Scholar
  24. Prabhakarpandian B, Shen MC, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K (2013) SyM-BBB: a microfluidic Blood Brain Barrier model. Lab Chip 13:1093–1101. doi: 10.1039/c2lc41208j CrossRefGoogle Scholar
  25. Scott JE (1992) Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J 6:2639–2645Google Scholar
  26. Sharp KG, Blackman GS, Glassmaker NJ, Jagota A, Hui CY (2004) Effect of stamp deformation on the quality of microcontact printing: theory and experiment. Langmuir 20:6430–6438. doi: 10.1021/la036332+ CrossRefGoogle Scholar
  27. Sorrentino S, Studt JD, Medalia O, Tanuj Sapra K (2015) Roll, adhere, spread and contract: structural mechanics of platelet function. Eur J Cell Biol 94:129–138. doi: 10.1016/j.ejcb.2015.01.001 CrossRefGoogle Scholar
  28. Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 15:4542–4554. doi: 10.1039/c5lc01028d CrossRefGoogle Scholar
  29. Stucki AO et al (2015) A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15:1302–1310. doi: 10.1039/c4lc01252f CrossRefGoogle Scholar
  30. Toole BP, Slomiany MG (2008) Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol 18:244–250. doi: 10.1016/j.semcancer.2008.03.009 CrossRefGoogle Scholar
  31. Voros E et al (2015) TPA immobilization on iron oxide nanocubes and localized magnetic hyperthermia accelerate blood clot lysis. Adv Funct Mater 25:1709–1718. doi: 10.1002/adfm.201404354 CrossRefGoogle Scholar
  32. Warboys CM, Berson RE, Mann GE, Pearson JD, Weinberg PD (2010) Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. Am J Physiol-Heart C 298:H1850–H1856. doi: 10.1152/ajpheart.00114.2010 CrossRefGoogle Scholar
  33. Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK (2012) Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices 14:1141–1148. doi: 10.1007/s10544-012-9680-5 CrossRefGoogle Scholar
  34. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 109:13515–13520. doi: 10.1073/pnas.1210182109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory of Nanotechnology for Precision MedicineFondazione Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations