Characterization of a miniaturized liquid bridge for nL sample infusion: a comparative study of sample flush-out behavior using flow simulations and direct ESI-MS analysis

  • Volker Neu
  • Pablo Dörig
  • Christof Fattinger
  • Stephan Müller
  • Renato Zenobi
Research Paper

Abstract

In this work we shed light on the microfluidics of a miniaturized liquid bridge that forms the central part of a so-called “capillary gap sampler,” a novel device for rapid and seamless injection of nanoliter sample volumes into an electrospray ionization mass spectrometer (ESI-MS). Parameters relevant for sample flush-out at the liquid bridge and in the spray capillary were identified by systematic variation of the capillary dimensions, the linear buffer flow rate (2.1–34 mm/s) and molecular weight of the analytes (0.5–30 kDa). We found that a reduction in capillary wall thickness by a factor of 1.6 significantly influences analyte peak shapes, leads to an inversion of the relationship between peak width and analyte molecular weight, and allows a fivefold decrease in peak width for large molecules down to 5 s. The results could be verified and explained by simulations, in which the presence of diffusion-controlled “dead zones” at the liquid bridge and dispersion in the spray tip that depend on analyte molecular weight were identified as key factors relevant for the sample flush-out process. The merging of simulations and experimental data gives useful hints toward the re-design of a spray tip as built-in ESI-MS interface for an optimized gap sampler performance.

Keywords

Capillary gap sampler Flow injection analysis Molecule dispersion Peak profiles 

Notes

Acknowledgments

The authors would like to thank Janos Vörös for fruitful discussions.

Supplementary material

10404_2016_1732_MOESM1_ESM.docx (490 kb)
Supplementary material 1 (DOCX 490 kb)

References

  1. Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc Lond A 235:67–77. doi: 10.1098/rspa.1956.0065 CrossRefGoogle Scholar
  2. Choi J, Terazima M (2002) Denaturation of a protein monitored by diffusion coefficients: myoglobin. J Phys Chem B 106:6587–6593. doi: 10.1021/jp0256802 CrossRefGoogle Scholar
  3. Feng X, Liu X, Luo Q, Liu B-F (2008) Mass spectrometry in systems biology: an overview. Mass Spectrom Rev 27:635–660. doi: 10.1002/mas.20182 CrossRefGoogle Scholar
  4. Feng X, Liu B-F, Li J, Liu X (2014) Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrom Rev 34:535–557. doi: 10.1002/mas.21417 CrossRefGoogle Scholar
  5. Gao D, Liu H, Jiang Y, Lin J-M (2013) Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip 13:3309–3322. doi: 10.1039/c3lc50449b CrossRefGoogle Scholar
  6. Gasilova N, Yu Q, Qiao L, Girault HH (2014) On-chip spyhole mass spectrometry for droplet based microfluidics. Angew Chem Int Ed Engl 53:4408–4412. doi: 10.1002/anie.201310795 CrossRefGoogle Scholar
  7. Gerhardt G (2011) Microfluidics-based separations technology for the analytical laboratory. Chromatogr Today 4:6–8Google Scholar
  8. Gerhardt G, Adams RN (1982) Determination of diffusion coefficients by flow injection analysis. Anal Chem 54:2618–2620. doi: 10.1021/ac00251a054 CrossRefGoogle Scholar
  9. Jian W, Romm MV, Edom RW, Miller VP, LaMarr WA, Weng N (2011) Evaluation of a high-throughput online solid phase extraction–tandem mass spectrometry system for in vivo bioanalytical studies. Anal Chem 83:8259–8266. doi: 10.1021/ac202017c CrossRefGoogle Scholar
  10. Jin D-Q, Zhu Y, Fang Q (2014) Swan probe: a nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate. Anal Chem 86:10796–10803. doi: 10.1021/ac503014k CrossRefGoogle Scholar
  11. Koster S, Verpoorte E (2007) A decade of microfluidic analysis coupled with electrospray mass spectrometry: an overview. Lab Chip 7:1394–1412. doi: 10.1039/B709706A CrossRefGoogle Scholar
  12. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588. doi: 10.1016/j.coph.2009.08.004 CrossRefGoogle Scholar
  13. Neu V, Steiner R, Müller S, Fattinger C, Zenobi R (2013) Development and characterization of a capillary gap sampler as new microfluidic device for fast and direct analysis of low sample amounts by ESI-MS. Anal Chem 85:4628–4635. doi: 10.1021/ac400186t CrossRefGoogle Scholar
  14. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583. doi: 10.1021/cr300337x CrossRefGoogle Scholar
  15. O’Brien JT, Williams ER, Holman H-YN (2015) Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) of live plant tissue with plume capture by continuous flow solvent probe. Anal Chem 87:2631–2638. doi: 10.1021/ac503383p CrossRefGoogle Scholar
  16. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39. doi: 10.1088/0960-1317/16/5/R01 CrossRefGoogle Scholar
  17. Ohla S, Belder D (2012) Chip-based separation devices coupled to mass spectrometry. Curr Opin Chem Biol 16:453–459. doi: 10.1016/j.cbpa.2012.05.180 CrossRefGoogle Scholar
  18. Ovchinnikova OS, Kertesz V, Van Berkel GJ (2011) Combining laser ablation/liquid phase collection surface sampling and high-performance liquid chromatography—electrospray ionization-mass spectrometry. Anal Chem 83:1874–1878. doi: 10.1021/ac200051y CrossRefGoogle Scholar
  19. Park S-G, Murray KK (2012) Infrared laser ablation sample transfer for on-line liquid chromatography electrospray ionization mass spectrometry. J Mass Spectrom 47:1322–1326. doi: 10.1002/jms.3096 CrossRefGoogle Scholar
  20. Pei J, Li Q, Kennedy RT (2010) Rapid and label-free screening of enzyme inhibitors using segmented flow electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 21:1107–1113. doi: 10.1016/j.jasms.2010.02.013 CrossRefGoogle Scholar
  21. Riveros-Moreno V, Wittenberg JB (1972) The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem 47:895–901Google Scholar
  22. Roach PJ, Laskin J, Laskin A (2010) Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:2233–2236. doi: 10.1039/c0an00312c CrossRefGoogle Scholar
  23. Růžička J (1992) The second coming of flow-injection analysis. Anal Chim Acta 261:3–10. doi: 10.1016/0003-2670(92)80169-8 CrossRefGoogle Scholar
  24. Sun S, Slaney TR, Kennedy RT (2012) Label free screening of enzyme inhibitors at femtomole scale using segmented flow electrospray ionization mass spectrometry. Anal Chem 84:5794–5800. doi: 10.1021/ac3011389 CrossRefGoogle Scholar
  25. Van Berkel GJ, Kertesz V (2015) An open port sampling interface for liquid introduction atmospheric pressure ionization mass spectrometry. Rapid Commun Mass Spectrom 29:1749–1756. doi: 10.1002/rcm.7274 CrossRefGoogle Scholar
  26. Van Berkel GJ, Kertesz V, King RC (2009) High-throughput mode liquid microjunction surface sampling probe. Anal Chem 81:7096–7101. doi: 10.1021/ac901098d CrossRefGoogle Scholar
  27. Volný M, Rolfs J, Hakimi B, Fryčák P, Schneider T, Liu D, Yen G, Chiu DT, Tureček F (2014) Nanoliter segmented-flow sampling mass spectrometry with online compartmentalization. Anal Chem 86:3647–3652. doi: 10.1021/ac500365r CrossRefGoogle Scholar
  28. Wissler EH (1969) On the applicability of the Taylor–Aris axial diffusion model to tubular reactor calculations. Chem Eng Sci 24:527–539. doi: 10.1016/0009-2509(69)85024-4 CrossRefGoogle Scholar
  29. Yin H, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T (2005) Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem 77:527–533. doi: 10.1021/ac049068d CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Volker Neu
    • 1
    • 4
  • Pablo Dörig
    • 2
    • 5
  • Christof Fattinger
    • 3
  • Stephan Müller
    • 3
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.Laboratory of Biosensors and BioelectronicsInstitute of Biomedical Engineering, ETH ZurichZurichSwitzerland
  3. 3.F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Discovery TechnologiesBaselSwitzerland
  4. 4.Competence Center Analytics, BASF SELudwigshafenGermany
  5. 5.Cytosurge AGGlattbruggSwitzerland

Personalised recommendations