Numerical modeling of microscale droplet dispensing in parallel-plate electrowetting-on-dielectric (EWOD) devices with various reservoir designs

  • Yin Guan
  • Albert Y. Tong
  • N. Y. Jagath B. Nikapitiya
  • Hyejin Moon
Research Paper

Abstract

Water droplet dispensing in microfluidic parallel-plate electrowetting-on-dielectric (EWOD) devices with various reservoir designs has been numerically studied. The Navier–Stokes equations are solved using a finite-volume formulation with a two-step projection method on a fixed grid. The free surface of the liquid is tracked by a coupled level set and volume-of-fluid method with the surface tension force determined by the continuum surface force model. Contact angle hysteresis which is an indispensible element in EWOD modeling has been implemented. A simplified model is adopted for the viscous stresses exerted by the parallel plates at the solid–liquid interface. Good agreement has been achieved between the numerical results and the corresponding experimental data. The dispensing mechanism has been carefully examined, and droplet volume inconsistency for each design has been investigated. It has been discovered that the pressure distribution on the cutting electrode at the beginning of the cutting stage is of considerable significance for the inconsistency of droplet volumes. Several key elements which directly affect the pressure distribution and volume inconsistency have been identified.

Keywords

EWOD Parallel plate Droplet dispensing Volume inconsistency Intercept Cutting length 

Notes

Acknowledgments

Hyejin Moon and Jagath Nikapitiya appreciate the partial support by the Defense Advanced Research Projects Agency/Microsystems Technology Office (DARPA/MTO) under the supervision of the program manager, Dr. Avram Bar-Cohen (Grant No. W31P4Q-11-1-0012).

References

  1. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  2. Berthier J, Clementz P, Raccurt O, Jary D, Claustre P, Peponnet C, Fouillet Y (2006) Computer aided design of an EWOD microdevice. Sens Actuators A-Phys 127(2):283–294. doi:10.1016/j.sna.2005.09.026 CrossRefGoogle Scholar
  3. Böhm S, Timmer B, Olthuis W, Bergveld P (2000) A closed-loop controlled electrochemically actuated micro-dosing system. J Micromech Microeng 10(4):498–504. doi:10.1088/0960-1317/10/4/303 CrossRefGoogle Scholar
  4. Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354. doi:10.1016/0021-9991(92)90240-Y MathSciNetCrossRefMATHGoogle Scholar
  5. Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80. doi:10.1109/JMEMS.2002.807467 CrossRefGoogle Scholar
  6. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218. doi:10.1038/nrd1985 CrossRefGoogle Scholar
  7. Fair RB (2007) Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281. doi:10.1007/s10404-007-0161-8 CrossRefGoogle Scholar
  8. Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C (2008) Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid Nanofluid 4(3):159–165. doi:10.1007/s10404-007-0164-5 CrossRefGoogle Scholar
  9. Gong J, Kim C-J (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6):898–906. doi:10.1039/B717417A CrossRefGoogle Scholar
  10. Guan Y, Tong AY (2015a) A numerical study of droplet splitting and merging in a parallel-plate electrowetting-on-dielectric device. J Heat Transf 137(9):091016. doi:10.1115/1.4030229 CrossRefGoogle Scholar
  11. Guan Y, Tong AY (2015b) A numerical study of microfluidic droplet transport in a parallel-plate electrowetting-on-dielectric (EWOD) device. Microfluid Nanofluid 19(6):1477–1495. doi:10.1007/s10404-015-1662-5 CrossRefGoogle Scholar
  12. Gupta R, Sheth DM, Boone TK, Sevilla AB, Frechette J (2011) Impact of pinning of the triple contact line on electrowetting performance. Langmuir 27(24):14923–14929. doi:10.1021/la203320g CrossRefGoogle Scholar
  13. Harlow F, Amsden A (1971) Fluid dynamics: a LASL monograph (mathematical solutions for problems in fluid dynamics). Technical Report, LA-4700, Los Alamos National LaboratoryGoogle Scholar
  14. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. doi:10.1016/0021-9991(81)90145-5 CrossRefMATHGoogle Scholar
  15. Jang LS, Lin GH, Lin YL, Hsu CY, Kan WH, Chen CH (2007) Simulation and experimentation of a microfluidic device based on electrowetting on dielectric. Biomed Microdevices 9(6):777–786. doi:10.1007/s10544-007-9089-8 CrossRefGoogle Scholar
  16. Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89(2):1441–1448. doi:10.1063/1.1332799 CrossRefGoogle Scholar
  17. Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  18. Kothe DB, Mjolsness RC, Torrey MD (1991) RIPPLE: a computer program for incompressible flows with free surfaces. Technical Report, LA-12007-MS, Los Alamos National LaboratoryGoogle Scholar
  19. Meier M, Yadigaroglu G, Smith BL (2002) A novel technique for including surface tension in PLIC-VOF methods. Eur J Mech B-Fluids 21(1):61–73. doi:10.1016/S0997-7546(01)01161-X CrossRefMATHGoogle Scholar
  20. Moon H, Cho SK, Garrell RL (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087. doi:10.1063/1.1504171 CrossRefGoogle Scholar
  21. Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774. doi:10.1088/0953-8984/17/28/r01 CrossRefGoogle Scholar
  22. Nguyen N-T, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5):052509. doi:10.1063/1.2335403 CrossRefGoogle Scholar
  23. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101. doi:10.1039/B110474H CrossRefGoogle Scholar
  24. Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens Actuators B Chem 98(2):319–327. doi:10.1016/j.snb.2003.09.030 CrossRefGoogle Scholar
  25. Renardy Y, Renardy M (2002) PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J Comput Phys 183(2):400–421. doi:10.1006/jcph.2002.7190 MathSciNetCrossRefMATHGoogle Scholar
  26. Rose D (1999) Microdispensing technologies in drug discovery. Drug Discov Today 4(9):411–419. doi:10.1016/S1359-6446(99)01388-4 CrossRefGoogle Scholar
  27. Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Methods Fluids 24(7):671–691. doi:10.1002/(SICI)1097-0363(19970415)24:7<671:AID-FLD508>3.0.CO;2-9 MathSciNetCrossRefMATHGoogle Scholar
  28. Rudman M (1998) A volume-tracking method for incompressible multifluid flows with large density variations. Int J Numer Methods Fluids 28(2):357–378. doi:10.1002/(SICI)1097-0363(19980815)28:2<357:AID-FLD750>3.0.CO;2-D CrossRefMATHGoogle Scholar
  29. Samiei E, Hoorfar M (2015) Systematic analysis of geometrical based unequal droplet splitting in digital microfluidics. J Micromech Microeng 25(5):055008. doi:10.1088/0960-1317/25/5/055008 CrossRefGoogle Scholar
  30. Sammarco TS, Burns MA (1999) Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J 45(2):350–366. doi:10.1002/aic.690450215 CrossRefGoogle Scholar
  31. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31(1):567–603. doi:10.1146/annurev.fluid.31.1.567 MathSciNetCrossRefGoogle Scholar
  32. Son G, Hur N (2002) A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles. Numer Heat Transf B Fundam 42(6):523–542. doi:10.1080/10407790190054067 CrossRefGoogle Scholar
  33. Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136. doi:10.1016/S0021-9991(03)00087-1 MathSciNetCrossRefMATHGoogle Scholar
  34. Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337. doi:10.1006/jcph.2000.6537 MathSciNetCrossRefMATHGoogle Scholar
  35. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159. doi:10.1006/jcph.1994.1155 CrossRefMATHGoogle Scholar
  36. Tong AY, Wang Z (2007) A numerical method for capillarity-dominant free surface flows. J Comput Phys 221(2):506–523. doi:10.1016/j.jcp.2006.06.034 CrossRefMATHGoogle Scholar
  37. Walker SW, Shapiro B (2006) Modeling the fluid dynamics of electrowetting on dielectric (EWOD). J Microelectromech Syst 15(4):986–1000. doi:10.1109/JMEMS.2006.878876 CrossRefGoogle Scholar
  38. Walker SW, Shapiro B, Nochetto RH (2009) Electrowetting with contact line pinning: computational modeling and comparisons with experiments. Phys Fluids 21(10):102103. doi:10.1063/1.3254022 CrossRefMATHGoogle Scholar
  39. Wang Z, Tong AY (2010) A sharp surface tension modeling method for two-phase incompressible interfacial flows. Int J Numer Methods Fluids 64(7):709–732. doi:10.1002/fld.2166 MathSciNetMATHGoogle Scholar
  40. Wang W, Jones TB, Harding DR (2011) On-chip double emulsion droplet assembly using electrowetting-on-dielectric and dielectrophoresis. Fusion Sci Technol 59(1):240–249Google Scholar
  41. Washizu M (1998) Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE Trans Ind Appl 34(4):732–737. doi:10.1109/28.703965 CrossRefGoogle Scholar
  42. Wheeler AR, Moon H, Kim C-J, Loo JA, Garrell RL (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76(16):4833–4838. doi:10.1021/ac0498112 CrossRefGoogle Scholar
  43. Wijethunga PA, Nanayakkara YS, Kunchala P, Armstrong DW, Moon H (2011) On-chip drop-to-drop liquid microextraction coupled with real-time concentration monitoring technique. Anal Chem 83(5):1658–1664. doi:10.1021/ac102716s CrossRefGoogle Scholar
  44. Yaddessalage JB (2013) Study of the capabilities of electrowetting on dielectric digital microfluidics (EWOD DMF) towards the high efficient thin-film evaporative cooling platform. Dissertation, The University of Texas at ArlingtonGoogle Scholar
  45. Yang X, James AJ, Lowengrub J, Zheng X, Cristini V (2006) An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J Comput Phys 217(2):364–394. doi:10.1016/j.jcp.2006.01.007 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations