Advertisement

The use of polybutene for controlling the flow of liquids in centrifugal microfluidic systems

  • 356 Accesses

  • 3 Citations

Abstract

The field of centrifugal microfluidics has evolved over the last several decades to allow implementation of complex biological and chemical assays on Lab-on-Disc (LOD) platforms. Present study describes the use of polymer polybutene for tuning hydrophobic siphons and for liquid volume definition on a centrifugal microfluidic platform. Both the siphon tuning and the volume definition steps are carried out by generating negative pressure that results from the volume expansion caused by the transfer of polybutene from a dedicated chamber into a secondary reservoir via a connecting siphon. The hydrophobic valve of the chamber that holds polybutene bursts open at specific angular velocities that depend on the height and density of the liquid column. Thus, the parameters of siphon activation can be adjusted by tuning the burst angular velocity of the valve that is driven by filling the tuning reservoir with a specific volume of polybutene. The same disc construction can be utilized to provide volume definition functionality to transfer liquids from one reservoir to another reservoir in as many fractions as there are immiscible liquids of different densities in the tuning chamber. The presented work also demonstrates the use of polybutene in sealing fluidic chambers to improve heating efficiency and to minimize evaporation during thermal cycling required for applications such as PCR amplification. Finally, the use of polybutene as a stationary liquid phase in droplet production on a spinning disc is demonstrated.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abi-Samra K, Clime L, Kong L, Gorkin R, Kim T-H, Cho Y-K, Madou M (2011a) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 11(5):643–652. doi:10.1007/s10404-011-0830-5

  2. Abi-Samra K, Hanson R, Madou M, Gorkin RA III (2011b) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11(4):723–726

  3. Aeinehvand MM, Ibrahim F, Harun SW, Djordjevic I, Hosseini S, Rothan HA, Yusof R, Madou MJ (2015) Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms. Biosens Bioelectron 67:424–430

  4. Al-Faqheri W, Ibrahim F, Thio THG, Bahari N, Arof H, Rothan HA, Yusof R, Madou M (2015) Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform. Sensors 15(3):4658–4676

  5. Amasia M (2011) Vapor-tight Ice valving in centrifugal microfluidics for PCR applications. In: Proceedings of micro-total analysis systems

  6. Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuators B Chem 161:1191–1197. doi:10.1016/j.snb.2011.11.080

  7. Ambravaneswaran B, Phillips SD, Basaran OA (2000) Theoretical analysis of a dripping faucet. Phys Rev Lett 85(25):5332

  8. Beaulieu I, Geissler M, Mauzeroll J (2009) Oxygen plasma treatment of polystyrene and Zeonor: substrates for adhesion of patterned cells. Langmuir 25(12):7169–7176

  9. Benedek I (2004) Pressure-sensitive adhesives and applications. CRC Press, Boca Raton

  10. Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer. Wiley, New York

  11. Chakraborty D, Chakraborty S (2010) Controlled microbubble generation on a compact disk. Appl Phys Lett 97:234103. doi:10.1063/1.3524518

  12. Chen AU, Notz PK, Basaran OA (2002) Computational and experimental analysis of pinch-off and scaling. Phys Rev Lett 88(17):174501

  13. Chen JM, Huang P-C, Lin M-G (2008) Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluid Nanofluidics 4(5):427–437

  14. Clime L, Brassard D, Geissler M, Veres T (2015) Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab Chip 15(11):2400–2411

  15. Czilwik G, Messinger T, Strohmeier O, Wadle S, von Stetten F, Paust N, Roth G, Zengerle R, Saarinen P, Niittymäki J (2015a) Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation. Lab Chip 15(18):3749–3759

  16. Czilwik G, Schwarz I, Keller M, Wadle S, Zehnle S, von Stetten F, Mark D, Zengerle R, Paust N (2015b) Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules. Lab Chip 15(4):1084–1091

  17. Dimov N, Clancy E, Gaughran J, Boyle D, Mc Auley D, Glynn MT, Dwyer RM, Coughlan H, Barry T, Barrett LM (2014) Solvent-selective routing for centrifugally automated solid-phase purification of RNA. Microfluid Nanofluidics 18(5–6):859–871

  18. Ducree J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17(7):S103–S115. doi:10.1088/0960-1317/17/7/S07

  19. Extrand C, Moon SI (2014) Measuring contact angles inside of capillary tubes with a tensiometer. J Colloid Interface Sci 431:200–203

  20. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

  21. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, Kim J, Kim H, Madou M, Cho YK (2010) Centrifugal microfluidics for biomedical applications. Lab Chip 10(14):1758–1773. doi:10.1039/B924109d

  22. Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2011) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluidics. doi:10.1007/s10404-011-0878-2

  23. Gorkin R III, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012a) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12(16):2894–2902

  24. Gorkin R, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012b) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902. doi:10.1039/c2lc20973j

  25. Haeberle S, Naegele L, Zengerle R, Ducrée J (2006) A digital centrifugal droplet-switch for routing of liquids. In: Proceedings of 10th international conference on miniaturized systems for chemistry and life sciences (µTAS2006)(Tokyo, Japan, 5–9 Nov), pp 570–572

  26. Haeberle S, Naegele L, Burger R, Zengerle R, Ducrée J (2007a) Alginate micro-bead fabrication on a centrifugal microfluidics platform. In: MEMS

  27. Haeberle S, Zengerle R, Ducrée J (2007b) Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluidics 3(1):65–75. doi:10.1007/s10404-006-0106-7

  28. Imaad SM, Lord N, Kulsharova G, Liu GL (2011) Microparticle and cell counting with digital microfluidic compact disc using standard CD drive. Lab Chip 11(8):1448–1456. doi:10.1039/C0lc00451k

  29. James DF (2009) Boger fluids. Annu Rev Fluid Mech 41:129–142

  30. Kim TH, Sunkara V, Abi-Samra K, Amasia M, Oh S, Kim N, Kim J, Kim H, Madou M, Cho YK (2011) Fully integrated centrifugal microfluidic platform for electrochemical biomarker detection. In: MicroTAS 2011 proceedings: miniaturized systems for chemistry and life sciences: 1668–1670

  31. Madou M, Zoval J, Jia GY, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

  32. Martinez-Duarte R, Gorkin RA, Abi-Samra K, Madou MJ (2010) The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8):1030–1043. doi:10.1039/B925456k

  33. Nakano M, Nakai N, Kurita H, Komatsu J, Takashima K, Katsura S, Mizuno A (2005) Single-molecule reverse transcription polymerase chain reaction using water-in-oil emulsion. J Biosci Bioeng 99(3):293–295

  34. Oh SJ, Park BH, Jung JH, Choi G, Lee DC, Seo TS (2015) Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens Bioelectron 75:293–300

  35. Park J-M, Cho Y-K, Lee B-S, Lee J-G, Ko C (2007) Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip 7:557–564. doi:10.1039/b616112j

  36. Prakash M, Gershenfeld N (2007) Microfluidic bubble logic. Science 315(5813):832–835

  37. Saarikoski I, Suvanto M, Pakkanen TA (2009) Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro–nanostructuring. Appl Surf Sci 255(22):9000–9005

  38. Schuler F, Schwemmer F, Trotter M, Wadle S, Zengerle R, von Stetten F, Paust N (2015) Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. Lab Chip 15:2759–2766

  39. Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) A microfluidic timer for timed valving and pumping in centrifugal microfluidics. Lab Chip 15(6):1545–1553

  40. Shi X, Brenner MP, Nagel SR (1994) A cascade of structure in a drop falling from a faucet. SCIENCE-NEW YORK THEN WASHINGTON: 219–219

  41. Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluidics 9(1):55–63. doi:10.1007/s10404-009-0523-5

  42. Soroori S, Kulinsky L, Kido H, Madou M (2014) Design and implementation of fluidic micro-pulleys for flow control on centrifugal microfluidic platforms. Microfluid Nanofluid 16(6):1117–1129

  43. Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044. doi:10.1039/b607051p

  44. Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44(17):6187–6229

  45. Sundberg SO, Wittwer CT, Gao C, Gale BK (2010) Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem 82:1546–1550. doi:10.1021/ac902398c

  46. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

  47. Thio THG, Soroori S, Ibrahim F, Al-Faqheri W, Soin N, Kulinsky L, Madou M (2013) Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms. Med Biol Eng Comput 51(5):525–535

  48. van Oordt T, Barb Y, Smetana J, Zengerle R, von Stetten F (2013) Miniature stick-packaging–an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13:2888–2892

  49. Wang L, Li PC (2011) Microfluidic DNA microarray analysis: a review. Anal Chim Acta 687(1):12–27

  50. Wang G, Ho H, Chen Q, Yang K-L, Kwok H-C, Wu SY, Kong S-K, Kwan Y, Zhang X (2013) A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control. Lab Chip 13:3698–3706

  51. Wilkes ED, Phillips SD, Basaran OA (1999) Computational and experimental analysis of dynamics of drop formation. Phys Fluids 11(12):3577–3598

  52. Zhang T, Chakrabarty K, Fair R (2002) System performance evaluation with system C for two PCR microelectrofluidic systems. In: Technical proceedings 2002 international conference on modeling and simulation of microsystems (San Juan, Puerto Rico, USA, 22–25 April), pp 48–53

Download references

Acknowledgments

The authors would like to thank Sanaz Moslemi-Asl for her assistance with the graphics and Sheldon Smilo (OmegaTek) for the spinning disc image acquisition/processing. This work was supported by the National Institute of Health Grant 1 R01 AI089541-01.

Author information

Correspondence to Salar Soroori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 50175 kb)

Supplementary material 1 (WMV 50175 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soroori, S., Rodriguez-Delgado, J.M., Kido, H. et al. The use of polybutene for controlling the flow of liquids in centrifugal microfluidic systems. Microfluid Nanofluid 20, 26 (2016) doi:10.1007/s10404-015-1677-y

Download citation

Keywords

  • Viscoelastic material
  • Polybutene
  • Centrifugal microfluidics
  • Hydrophobic siphon
  • Tuning valve
  • Volume definition
  • Liquid polymer