Advertisement

Can liquid metal flow in microchannels made of its own oxide skin?

  • S. Liu
  • X. Sun
  • N. Kemme
  • V. G. Damle
  • C. Schott
  • M. Herrmann
  • K. RykaczewskiEmail author
Short Communication

Abstract

Rapid surface oxidation of gallium-based liquid metals complicates their manipulation but can also be used to stabilize them into 3D shapes. We show that GaInSn can readily flow within such structures. The oxide skin microchannel walls are flexible and, if ruptured, are restored through oxidation of exposed liquid metal. These flexible-wall microchannels can be repeatedly deflated and refilled with the liquid metal.

Keywords

Liquid metal Flexible microfluidics Oxide GaInSn 

Notes

Acknowledgments

KR acknowledges startup funding from Ira A. Fulton Schools of Engineering at Arizona State University.

Supplementary material

10404_2015_1665_MOESM1_ESM.pdf (554 kb)
Supplementary material 1 (PDF 554 kb)

Supplementary material 2 (AVI 4074 kb)

10404_2015_1665_MOESM3_ESM.mp4 (10.2 mb)
Supplementary material 3 (MP4 10459 kb)

References

  1. Boley JW, White EL, Chiu GTC, Kramer RK (2014) Direct writing of gallium–indium alloy for stretchable electronics. Adv Funct Mater 24:3501–3507CrossRefGoogle Scholar
  2. Bor J, Bartholomew C (1967) The optical properties of indium, gallium and thallium. Proc Phys Soc 90:1153CrossRefGoogle Scholar
  3. Cademartiri L et al (2012) Electrical resistance of AgTS–S(CH2)n − 1CH3/Ga2O3/EGaIn tunneling junctions. J Phys Chem C 116:10848–10860. doi: 10.1021/jp212501s CrossRefGoogle Scholar
  4. Cao A, Yuen P, Lin L (2007) Microrelays with bidirectional electrothermal electromagnetic actuators and liquid metal wetted contacts. J Microelectromech Syst 16:700–708CrossRefGoogle Scholar
  5. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 120:148–150CrossRefGoogle Scholar
  6. Cumby BL, Hayes GJ, Dickey MD, Justice RS, Tabor CE, Heikenfeld JC (2012) Reconfigurable liquid metal circuits by Laplace pressure shaping. Appl Phys Lett 101:174102CrossRefGoogle Scholar
  7. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic Gallium–Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18:1097–1104CrossRefGoogle Scholar
  8. Doudrick K, Liu S, Klein KL, Mutunga EM, Varanasi KK, Rykaczewski K (2014) Different shades of oxide: from nanoscale wetting to imprinting of gallium-based liquid metals. Langmuir 30:6867–6877CrossRefGoogle Scholar
  9. Dumke MF, Tombrello TA, Weller RA, Housley RM, Cirlin EH (1983) Sputtering of the gallium–indium eutectic alloy in the liquid phase. Surf Sci 124:407–422. doi: 10.1016/0039-6028(83)90800-2 CrossRefGoogle Scholar
  10. Fassler A, Majidi C (2013) 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab Chip 13:4442–4450CrossRefGoogle Scholar
  11. Fassler A, Majidi C (2015) Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 27:1928–1932CrossRefGoogle Scholar
  12. Goldstein J, Newbury DE, Echlin P, Joy DC, Romig AD Jr, Lyman CE, Fiori C, Lifshin E (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer, New York.Google Scholar
  13. Gozen BA, Tabatabai A, Ozdoganlar OB, Majidi C (2014) High-density soft-matter electronics with micron-scale line width. Adv Mater 26:5211–5216. doi: 10.1002/adma.201400502 CrossRefGoogle Scholar
  14. Irshad W, Peroulis D (2009) A silicon-based galinstan magnetohydrodynamic pump. In: Power MEMS, Washinton DC, pp 127–129Google Scholar
  15. Jeong SH, Hagman A, Hjort K, Jobs M, Sundqvist J, Wu Z (2012) Liquid alloy printing of microfluidic stretchable electronics. Lab Chip 12:4657–4664. doi: 10.1039/C2LC40628D CrossRefGoogle Scholar
  16. Joshipura ID, Ayers HR, Majidi C, Dickey MD (2015) Methods to pattern liquid metals. J Mater Chem C 3:3834–3841. doi: 10.1039/C5TC00330J CrossRefGoogle Scholar
  17. Khan MR, Hayes GJ, Zhang S, Dickey MD, Lazzi G (2012) A pressure responsive fluidic microstrip open stub resonator using a liquid metal alloy. IEEE Microw Wirel Compon Lett 22:577–579. doi: 10.1109/LMWC.2012.2223754 CrossRefGoogle Scholar
  18. Khan MR, Eaker CB, Bowden EF, Dickey MD (2014a) Giant and switchable surface activity of liquid metal via surface oxidation. Proc Natl Acad Sci USA 111:14047–14051CrossRefGoogle Scholar
  19. Khan MR, Trlica C, Dickey MD (2014b) Recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv Funct Mater 25:671–678CrossRefGoogle Scholar
  20. Khan MR, Trlica C, So J-H, Valeri M, Dickey MD (2014c) Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl Mater Interfaces 6:22467–22473. doi: 10.1021/am506496u CrossRefGoogle Scholar
  21. Khan MR, Trlica C, Dickey MD (2015) Microfluidics: recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv Funct Mater 25:654CrossRefGoogle Scholar
  22. Kim H-J, Son C, Ziaie B (2008) A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett 92:011904CrossRefGoogle Scholar
  23. Kim D, Lee D-W, Choi W, Lee J-B (2013a) A super-lyophobic 3-D PDMS channel as a novel microfluidic platform to manipulate oxidized Galinstan. J Microelectromech Syst 22:1267–1275CrossRefGoogle Scholar
  24. Kim D, Thissen P, Viner G, Lee D-W, Choi W, Chabal YJ, Lee J-B (2013b) Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl Mater Interfaces 5:179–185. doi: 10.1021/am302357t CrossRefGoogle Scholar
  25. Kim D, Lee Y, Lee D-W, Choi W, Lee J-BJ (2013b) Hydrochloric acid-impregnated paper for liquid metal microfluidics. In: 2013 The 17th international conference on transducers and Eurosensors XXVII. IEEE, pp 2620–2623Google Scholar
  26. Knoblauch M, Hibberd JM, Gray JC, van Bel AJ (1999) A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat Biotech 17:906–909CrossRefGoogle Scholar
  27. Koo C, LeBlanc BE, Kelley M, Fitzgerald HE, Huff GH, Han A (2014) Manipulating liquid metal droplets in microfluidic channels with minimized skin residues toward tunable RF applications. J Microelectromech Syst 24:1069–1076CrossRefGoogle Scholar
  28. Kramer RK, Majidi C, Sahai R, Wood RJ (2011a) Soft curvature sensors for joint angle proprioception. In: IEEE/RSJ international conference on intelligent robots and systems. IEEE, San Francisco, pp 1919–1926. doi: 10.1109/IROS.2011.6094701 Google Scholar
  29. Kramer RK, Majidi C, Wood RJ (2011b) Wearable tactile keypad with stretchable artificial skin. IEEE/RSJ international conference on robots and Automation. IEEE, Shanghai, pp 1103–1107. doi: 10.1109/ICRA.2011.5980082 Google Scholar
  30. Kramer RK, Boley JW, Stone HA, Weaver JC, Wood RJ (2013a) Effect of microtextured surface topography on the wetting behavior of eutectic gallium–indium alloys. Langmuir 30:533–539. doi: 10.1021/la404356r CrossRefGoogle Scholar
  31. Kramer RK, Majidi C, Wood RJ (2013b) Masked deposition of gallium–indium alloys for liquid-embedded elastomer conductors. Adv Funct Mater 23:5292–5296. doi: 10.1002/adfm.201203589 CrossRefGoogle Scholar
  32. Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D, Whitesides GM (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22:2749–2752. doi: 10.1002/adma.200904201 CrossRefGoogle Scholar
  33. Ladd C, So J-H, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25:5081–5085. doi: 10.1002/adma.201301400 CrossRefGoogle Scholar
  34. Li M, Yu B, Behdad N (2010) Liquid-tunable frequency selective surfaces. IEEE Microw Wirel Compon Lett 20:423–425CrossRefGoogle Scholar
  35. Li H, Yang Y, Liu J (2012) Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett 101:073511CrossRefGoogle Scholar
  36. Li G, Parmar M, Kim D, Lee J-BJ, Lee D-W (2014) PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan. Lab Chip 14:200–209CrossRefGoogle Scholar
  37. Liu S, Sun X, Hildreth OJ, Rykaczewski K (2015) Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing. Lab Chip 15:1376–1384. doi: 10.1039/C4LC01341G CrossRefGoogle Scholar
  38. Ma K-Q, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361:252–256CrossRefGoogle Scholar
  39. Michaud HO, Teixidor J, Lacour SP (2015) Soft metal constructs for large strain sensor membrane. Smart Mater Struct 24:035020CrossRefGoogle Scholar
  40. Mohammed MG, Dickey MD (2013) Strain-controlled diffraction of light from stretchable liquid metal micro-components. Sens Actuat A 193:246–250CrossRefGoogle Scholar
  41. Ota H et al (2014) Highly deformable liquid-state heterojunction sensors. Nat Commun. doi: 10.1038/ncomms6032 Google Scholar
  42. Paik JK, Kramer RK, Wood RJ (2011) Stretchable circuits and sensors for robotic origami. In: IEEE/RSJ international Conference on intelligent robots and systems. IEEE, San Francisco, pp 414–420. doi: 10.1109/IROS.2011.6094746 Google Scholar
  43. Park J et al (2012) Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat Comm 3:916CrossRefGoogle Scholar
  44. Ponce Wong RD, Posner JD, Santos VJ (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sens Actuat A 179:62–69CrossRefGoogle Scholar
  45. Regan M, Pershan PS, Magnussen O, Ocko B, Deutsch M, Berman L (1997a) X-ray reflectivity studies of liquid metal and alloy surfaces. Phys Rev B 55:15874CrossRefGoogle Scholar
  46. Regan M, Tostmann H, Pershan PS, Magnussen O, DiMasi E, Ocko B, Deutsch M (1997b) X-ray study of the oxidation of liquid-gallium surfaces. Phys Rev B 55:10786CrossRefGoogle Scholar
  47. Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T, Schaefer JA (2004) Viscosity effect on GaInSn studied by XPS. Surf Interface Anal 36:981–985. doi: 10.1002/sia.1817 CrossRefGoogle Scholar
  48. Sen P, Chang-Jin K (2009) Microscale liquid-metal switches—a review. IEEE Trans Ind Electron 56:1314–1330. doi: 10.1109/TIE.2008.2006954 CrossRefGoogle Scholar
  49. Shan F, Liu G, Lee W, Lee G, Kim I, Shin B (2005) Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition. J Appl Phys 98:023504CrossRefGoogle Scholar
  50. Sivan V, Tang SY, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A (2013) Liquid metal marbles. Adv Funct Mater 23:144–152CrossRefGoogle Scholar
  51. Speckbrock G, Kamitz S, Alt M, Schmitt H (1997) Low melting gallium, indium, and tin eutectic alloys, and thermometers employing same. US Patent US6019509AGoogle Scholar
  52. Swensen JP, Odhner LU, Araki B, Dollar AM (2014) Printing 3D electrical traces in additive manufactured parts for injection of low melting temperature metals. J Mech Robot 7:021004CrossRefGoogle Scholar
  53. Tabatabai A, Fassler A, Usiak C, Majidi C (2013) Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29:6194–6200CrossRefGoogle Scholar
  54. Thelen J, Dickey MD, Ward T (2012) A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab Chip 12:3961–3967CrossRefGoogle Scholar
  55. Vetrovec J, Litt AS, Copeland DA, Junghans J, Durkee R (2013) Liquid metal heat sink for high-power laser diodes. SPIE Proc 8605:1–7. doi: 10.1117/12.2005357 Google Scholar
  56. Wenjiang S, Edwards RT, Kim JY (2006) Electrostatically actuated metal-droplet microswitches integrated on CMOS chip. J Microelectromech Syst 15:879–889. doi: 10.1109/JMEMS.2006.878877 CrossRefGoogle Scholar
  57. Wissman J, Lu T, Majidi C (2013) Soft-matter electronics with stencil lithography. IEEE Sens. doi: 10.1109/ICSENS.2013.6688217 Google Scholar
  58. Yang H, Lightner CR, Dong L (2011) Light-emitting coaxial nanofibers. ACS Nano 6:622–628. doi: 10.1021/nn204055t CrossRefGoogle Scholar
  59. Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2:863–872. doi: 10.1016/j.nanoen.2013.03.002 CrossRefGoogle Scholar
  60. Zhang Q, Gao Y, Liu J (2013) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 1–7Google Scholar
  61. Zheng Y, He Z-Z, Yang J, Liu J (2013a) Fully automatic liquid metal printer towards personal electronics manufacture arXiv:1312.0617
  62. Zheng Y, Zhang Q, Liu J (2013b) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3:112117-1–112117-6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Liu
    • 1
  • X. Sun
    • 1
  • N. Kemme
    • 1
  • V. G. Damle
    • 1
  • C. Schott
    • 1
  • M. Herrmann
    • 1
  • K. Rykaczewski
    • 1
    Email author
  1. 1.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations