Advertisement

Microfluidics and Nanofluidics

, Volume 19, Issue 6, pp 1497–1505 | Cite as

Sensitive optofluidic flow rate sensor based on laser heating and microring resonator

  • Yuan Gong
  • Minglei Zhang
  • Chaoyang Gong
  • Yu Wu
  • Yunjiang Rao
  • Xudong Fan
Research Paper

Abstract

We demonstrate an optofluidic flow rate sensor based on the heat transfer effect in a microfluidic channel for the lab-on-a-chip applications. By employing an optofluidic ring resonator (OFRR), the wavelength shift of the resonant dip of the whispering gallery mode is detected as a function of the flow rate when the flow is heated by a 1480-nm laser. A measurement range of 2–100 μL/min, a minimum detectable change of 30 nL/min, and an accuracy of 5.2 % for the flow rate detection are achieved. Experimental results indicate that the OFRR flow rate sensor has good repeatability, and the inverse sensitivity is beneficial for detecting the low flow rate with high sensitivity.

Keywords

Optofluidics Flow rate sensor Microring resonator Heat transfer Whispering gallery mode 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (61575039, 61475032, and 61290312), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1218), and the 111 Project (B14039).

Supplementary material

10404_2015_1663_MOESM1_ESM.docx (292 kb)
Supplementary material 1 (DOCX 292 kb)

References

  1. Bowen AL, Martin RS (2010) Integration of on-chip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection. Electrophoresis 31:2534–2540CrossRefGoogle Scholar
  2. Chen R, Dong PF, Xu JH, Wang YD, Luo GS (2012) Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells. Lab Chip 12:3858–3860CrossRefGoogle Scholar
  3. Cheri MS, Latifi H, Sadeghi J, Moghaddam MS, Shahraki H, Hajghassem H (2014) Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst 139:431–438CrossRefGoogle Scholar
  4. Esquivel JP, Castellarnau M, Senn T, Löchel B, Samitier J, Sabaté N (2012) Fuel cell-powered microfluidic platform for lab-on-a-chip applications. Lab Chip 12:74–79CrossRefGoogle Scholar
  5. Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photon 5:591–597CrossRefGoogle Scholar
  6. Fan X, Yun SH (2014) The potential of optofluidic biolasers. Nat Methods 11:141–147CrossRefGoogle Scholar
  7. Fan X, White IM, Zhu H, Suter JD, Oveys H (2007) Overview of novel integrated optical ring resonator bio/chemical sensors. Proc SPIE 6452:64520MCrossRefGoogle Scholar
  8. Foreman MR, Swaim JD, Vollmer F (2015) Whispering gallery mode sensors. Adv Opt Photon 7:168–240CrossRefGoogle Scholar
  9. Garza-Garcia LD, Garcia-Lopez E, Camacho-Leon S, del Refugio Rocha-Pizaña M, López-Pacheco F, López-Meza J, Araiz-Hernandez D, Tapia-Mejia EJ, Trujillo-de Santiago G, Rodriguez-Gonzalez CA, Alvarez MM (2014) Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate. Lab Chip 14:1320–1329CrossRefGoogle Scholar
  10. Gervinskas AS, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2013) PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sens J 13:601–609CrossRefGoogle Scholar
  11. Gorodetsky ML, Ilchenko VS (1999) Optical microsphere resonators: optimal coupling to high-Q-whispering-gallery modes. J Opt Soc Am B 16:147–154CrossRefGoogle Scholar
  12. Hassan U, Watkins NN, Edwards C, Bashir R (2014) Flow metering characterization within an electrical cell counting microfluidic device. Lab Chip 14:1469–1476CrossRefGoogle Scholar
  13. He XH, Wang W, Deng K, Xie R, Ju XJ, Liu Z, Chu LY (2015) Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Adv 5:928–936CrossRefGoogle Scholar
  14. Keyon ASA, Guijt RM, Bolch CJ, Breadmore MC (2014) Droplet microfluidics for postcolumn reactions in capillary electrophoresis. Anal Chem 86:11811–11818CrossRefGoogle Scholar
  15. Kim KH, Fan X (2014) Surface sensitive microfluidic optomechanical ring resonator sensors. Appl Phys Lett 105:191101CrossRefGoogle Scholar
  16. Knight JC, Cheung G, Jacques F, Birks TA (1997) Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett 22:1129–1131CrossRefGoogle Scholar
  17. König J, Voigt A, Büttner L, Czarske J (2010) Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing. Meas Sci Technol 21:074005CrossRefGoogle Scholar
  18. Korczyk PM, Cybulski O, Makulska S, Garstecki P (2011) Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab Chip 11:173–175CrossRefGoogle Scholar
  19. Li H, Fan X (2010) Characterization of sensing capability of optofluidic ring resonator biosensors. Appl Phys Lett 97:011105CrossRefGoogle Scholar
  20. Li Z, Mak SY, Sauret A, Shum HC (2014) Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab Chip 14:744–749CrossRefGoogle Scholar
  21. Lien V, Vollmer F (2007) Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 7:1352–1356CrossRefGoogle Scholar
  22. Liu Y, Shi L, Xu XB, Zhao P, Wang ZQ, Pu SL, Zhang XL (2014a) All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator. Lab Chip 14:3004–3010CrossRefGoogle Scholar
  23. Liu Z, Tse MV, Zhang AP, Tam HY (2014b) Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co2+-doped optical fiber. Opt Lett 39:5877–5880CrossRefGoogle Scholar
  24. Marimuthu M, Kim S (2013) Pumpless steady-flow microfluidic chip for cell culture. Anal Biochem 437:161–163CrossRefGoogle Scholar
  25. Nezhad AS, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2013) PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sens J 13:601–609CrossRefGoogle Scholar
  26. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942CrossRefGoogle Scholar
  27. Oates TC, Burgess LW (2012) Sensitive refractive index detection using a broad-band optical ring resonator. Anal Chem 84:7713–7720CrossRefGoogle Scholar
  28. Palmieri M (2015) Piezoelectric microfluidic pumping device and method for using the same. US Patent No. 08956325Google Scholar
  29. Riche CT, Zhang C, Gupta M, Malmstadt N (2014) Fluoropolymer surface coatings to control droplets in microfluidic devices. Lab Chip 14:1834–1841CrossRefGoogle Scholar
  30. Rodriguez-Villarreal AI, Arundell M, Carmona M, Samitier J (2010) High flow rate microfluidic device for blood plasma separation using a range of temperatures. Lab Chip 10:211–219CrossRefGoogle Scholar
  31. Rowland DR, Love JD (1993) Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc J 140:177–188Google Scholar
  32. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319CrossRefGoogle Scholar
  33. Shih SCC, Gach PC, Sustarich J, Simmons BA, Adams PD, Singh S, Singh AK (2015) A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab Chip 15:225–236CrossRefGoogle Scholar
  34. Stan CA, Tang SK, Whitesides GM (2009) Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal Chem 81:2399–2402CrossRefGoogle Scholar
  35. Suter JD, White IM, Zhu H, Fan X (2007) Thermal characterization of liquid core optical ring resonator sensors. Appl Opt 46:389–396CrossRefGoogle Scholar
  36. Suter JD, White IM, Zhu H, Shi H, Caldwell CW, Fan X (2008) Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens Bioelectron 23:1003–1009CrossRefGoogle Scholar
  37. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596CrossRefGoogle Scholar
  38. White IM, Hanumegowda NM, Fan X (2005) Subfemtomole detection of small molecules with microsphere sensors. Opt Lett 30:3189–3191CrossRefGoogle Scholar
  39. White IM, Oveys H, Fan X (2006) Liquid-core optical ring-resonator sensors. Opt Lett 31:1319–1321CrossRefGoogle Scholar
  40. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  41. Wu J, Ye J (2005) Micro flow sensor based on two closely spaced amperometric sensors. Lab Chip 5:1344–1347CrossRefGoogle Scholar
  42. Wu S, Lin Q, Yuen Y, Tai YC (2001) MEMS flow sensors for nanofuidic applications. Sens Actuators A 89:152–158CrossRefGoogle Scholar
  43. Xie J, Miao YN, Shih J, He Q, Liu J, Tai YC, Lee TD (2004) An electrochemical pumping system for on-chip gradient generation. Anal Chem 76:3756–3763CrossRefGoogle Scholar
  44. Xu R, Xin H, Li Q, Yang X, Chen H, Li B (2012) Photothermal formation and targeted positioning of bubbles by a fiber taper. Appl Phys Lett 101:054103CrossRefGoogle Scholar
  45. Yang AHJ, Soh HT (2012) Acoustophoretic Sorting of Viable Mammalian Cells in a Microfluidic Device. Anal Chem 84:10756–10762CrossRefGoogle Scholar
  46. Zhang K, Jian A, Zhang X, Wang Y, Li Z, Tam H (2011) Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11:1389–1395CrossRefGoogle Scholar
  47. Zhu HY, White IM, Suter JD, Dale PS, Fan X (2007) Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt Express 15:9139–9146CrossRefGoogle Scholar
  48. Zhu J, Ozdemir SK, Xiao YF, Li L, He L, Chen DR, Yang L (2010) On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photon 4:46–49CrossRefGoogle Scholar
  49. Zhu J, Ozdemir SK, Yilmaz H, Peng B, Dong M, Tomes M, Carmon T, Yang L (2014) Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering. Sci Rep 4:6396CrossRefGoogle Scholar
  50. Zook JM, Vreeland WN (2010) Effects of temperature, acyl chain length, and flow-rate ratio on liposome formation and size in amicrofluidic hydrodynamic focusing device. Soft Matter 6:1352–1360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yuan Gong
    • 1
    • 2
    • 3
  • Minglei Zhang
    • 1
  • Chaoyang Gong
    • 1
  • Yu Wu
    • 1
    • 3
  • Yunjiang Rao
    • 1
  • Xudong Fan
    • 2
  1. 1.Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education)University of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations