Microfluidics and Nanofluidics

, Volume 19, Issue 6, pp 1465–1476 | Cite as

Electroosmotic flow in a slit nanochannel with superhydrophobic walls

  • Simanta De
  • Somnath Bhattacharyya
  • Steffen HardtEmail author
Research Paper


Electroosmotic flow (EOF) in a slit channel with alternating charged patches of vanishing slip velocity and uncharged patches of vanishing shear stress is studied by numerically solving the coupled Poisson–Nernst–Planck Navier–Stokes system. It is taken into account that there may exist an arbitrary shift between the patterns at the top and the bottom wall. The studied system should mimic a slit nanochannel with superhydrophobic walls. The results are expressed in form of a flow enhancement factor E f, representing the average flow velocity through the channel divided by the average flow velocity through a channel with planar, unstructured walls of the same zeta potential. Extensive studies are carried out showing how E f varies with the system parameters. While it has been shown that under the assumption of thin-Debye layer values of E f close to 1 should be expected for EOF along a superhydrophobic surface, a substantial flow enhancement is found for the scenario studied here. For the range of parameters considered, a maximum flow enhancement factor of about 7 is obtained. The main mechanism responsible for this flow enhancement is the proximity of regions in which an electric body force exists to gas–liquid interface patches. For the latter, the shear stress is much reduced compared to liquid–solid interface patches, reducing the net friction coefficient of the electrically driven flow.


Electroosmotic flow Nanochannel Superhydrophobic surface Poisson–Nernst–Planck equations 


  1. Bahga SS, Vinogradova OI, Bazant MZ (2010) Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J Fluid Mech 644:245. doi: 10.1017/s0022112009992771 zbMATHCrossRefGoogle Scholar
  2. Baldessari F, Santiago JG (2008a) Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interface Sci 325:526–538. doi: 10.1016/j.jcis.2008.06.007 CrossRefGoogle Scholar
  3. Baldessari F, Santiago JG (2008b) Electrokinetics in nanochannels: part II. Mobility dependence on ion density and ionic current measurements. J Colloid Interface Sci 325:539–546. doi: 10.1016/j.jcis.2008.06.008 CrossRefGoogle Scholar
  4. Belyaev AV, Vinogradova OI (2011) Electro-osmosis on anisotropic superhydrophobic surfaces. Phys Rev Lett. doi: 10.1103/PhysRevLett.107.098301 Google Scholar
  5. Cheng YP, Teo CJ, Khoo BC (2009) Microchannel flows with superhydrophobic surfaces: effects of Reynolds number and pattern width to channel height ratio. Phys Fluids 21:122004. doi: 10.1063/1.3281130 CrossRefGoogle Scholar
  6. Choi C-H, Kim C-J (2006) Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett. doi: 10.1103/PhysRevLett.96.066001 Google Scholar
  7. Datta S, Choudhary JN (2013) Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels. Fluid Dyn Res 45:055502. doi: 10.1088/0169-5983/45/5/055502 MathSciNetCrossRefGoogle Scholar
  8. Feng Y, Zhang Y, Ying C, Wang D, Du C (2015) Nanopore-based fourth-generation DNA sequencing technology. Genom Proteom Bioinf 13:4–16. doi: 10.1016/j.gpb.2015.01.009 CrossRefGoogle Scholar
  9. Fletcher CAJ (1991) Computational techniques for fluid dynamics vol 2, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  10. Fyrillas MM (2010) Shape factor and shape optimization for a periodic array of isothermal pipes. Int J Heat Mass Transf 53:982–989. doi: 10.1016/j.ijheatmasstransfer.2009.11.016 zbMATHCrossRefGoogle Scholar
  11. Ghosh U, Chakraborty S (2012) Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements. Phys Rev E. doi: 10.1103/PhysRevE.85.046304 Google Scholar
  12. Ghosh U, Chakraborty S (2013) Electrokinetics over charge-modulated surfaces in the presence of patterned wettability: role of the anisotropic streaming potential. Phys Rev E. doi: 10.1103/PhysRevE.88.033001 Google Scholar
  13. Langevin D (2014) Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu Rev Fluid Mech 46:47–65. doi: 10.1146/annurev-fluid-010313-141403 MathSciNetCrossRefGoogle Scholar
  14. Lee C, Choi C-H, Kim C-J (2008) Structured surfaces for a giant liquid slip. Phys Rev Lett. doi: 10.1103/PhysRevLett.101.064501 Google Scholar
  15. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98zbMATHCrossRefGoogle Scholar
  16. Lohse D, Zhang X (2015) Surface nanobubbles and nanodroplets. Rev Modern Phys 87:981–1035CrossRefGoogle Scholar
  17. Martell MB, Perot JB, Rothstein JP (2009) Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J Fluid Mech 620:31. doi: 10.1017/s0022112008004916 zbMATHCrossRefGoogle Scholar
  18. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, Hoboken, New JerseyCrossRefGoogle Scholar
  19. Ng C-O, Chu HCW (2011) Electrokinetic flows through a parallel-plate channel with slipping stripes on walls. Phys Fluids 23:102002. doi: 10.1063/1.3647582 CrossRefGoogle Scholar
  20. Ng C-O, Zhou Q (2012) Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage. Fluid Dyn Res 44:055507. doi: 10.1088/0169-5983/44/5/055507 MathSciNetCrossRefGoogle Scholar
  21. Papadopoulos P, Deng X, Vollmer D, Butt HJ (2012) Electrokinetics on superhydrophobic surfaces. J Phys Condens Matter Inst Phys J 24:464110. doi: 10.1088/0953-8984/24/46/464110 CrossRefGoogle Scholar
  22. Park H, Park H, Kim J (2013) A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys Fluids 25:110815. doi: 10.1063/1.4819144 CrossRefGoogle Scholar
  23. Philip JR (1972) Integral properties of flows satisfying mixed no-slip and no-shear conditions. Z Angew Math Phys 23:960–968zbMATHMathSciNetCrossRefGoogle Scholar
  24. Rothstein JP (2010) Slip on superhydrophobic surfaces. Annu Rev Fluid Mech 42:89–109. doi: 10.1146/annurev-fluid-121108-145558 CrossRefGoogle Scholar
  25. Schönecker C, Hardt S (2014) Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes. Phys Rev E. doi: 10.1103/PhysRevE.89.063005 Google Scholar
  26. Schönecker C, Baier T, Hardt S (2014) Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J Fluid Mech 740:168–195. doi: 10.1017/jfm.2013.647 MathSciNetCrossRefGoogle Scholar
  27. Seshadri G, Baier T (2013) Effect of electro-osmotic flow on energy conversion on superhydrophobic surfaces. Phys Fluids 25:042002. doi: 10.1063/1.4802044 CrossRefGoogle Scholar
  28. Slouka Z, Senapati S, Chang HC (2014) Microfluidic systems with ion-selective membranes. Annu Rev Anal Chem 7:317–335. doi: 10.1146/annurev-anchem-071213-020155 CrossRefGoogle Scholar
  29. Sparreboom W, van den Berg A, Eijkel JCT (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004. doi: 10.1088/1367-2630/12/1/015004 CrossRefGoogle Scholar
  30. Squires TM (2008) Electrokinetic flows over in homogeneously slipping surfaces. Phys Fluids 20:092105. doi: 10.1063/1.2978954 CrossRefGoogle Scholar
  31. Steffes C, Baier T, Hardt S (2011) Enabling the enhancement of electroosmotic flow over superhydrophobic surfaces by induced charges. Colloids Surf A 376:85–88. doi: 10.1016/j.colsurfa.2010.09.002 CrossRefGoogle Scholar
  32. Türk S, Daschiel G, Stroh A, Hasegawa Y, Frohnapfel B (2014) Turbulent flow over superhydrophobic surfaces with streamwise grooves. J Fluid Mech 747:186–217. doi: 10.1017/jfm.2014.137 CrossRefGoogle Scholar
  33. Zhang Y-L, Xia H, Kim E, Sun H-B (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217. doi: 10.1039/c2sm26517f CrossRefGoogle Scholar
  34. Zhao H (2010) Electro-osmotic flow over a charged superhydrophobic surface. Phys Rev E. doi: 10.1103/PhysRevE.81.066314 Google Scholar
  35. Zhao H (2011) Streaming potential generated by a pressure-driven flow over superhydrophobic stripes. Phys Fluids 23:022003. doi: 10.1063/1.3551616 CrossRefGoogle Scholar
  36. Zhao C, Yang C (2012) Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls. Electrophoresis 33:899–980. doi: 10.1002/elps.201100564 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Simanta De
    • 1
  • Somnath Bhattacharyya
    • 1
  • Steffen Hardt
    • 2
    Email author
  1. 1.Department of MathematicsIndian Institute of Technology KhargapurKharagpurIndia
  2. 2.Institute for Nano- and Microfluidics, Center of Smart InterfacesTU DarmstadtDarmstadtGermany

Personalised recommendations