Advertisement

Magnetically controllable generation of ferrofluid droplets

  • 658 Accesses

  • 16 Citations

Abstract

This paper reports the manipulation of ferrofluid droplets by using a microfluidic flow-focusing device equipped with a magnetic tweezer. Besides the traditional flow rate controlling method, the magnetic field also can be applied to control the size of the droplets. Two major effects in magnetic manipulation process: magnetoviscous effect and magnetic drag effect, were studied. Under a fixed flow rate (CP = 1 mL/h, DP = 0.2 mL/h), the average sizes of ferrofluid droplets were tunable from 135 to 95 μm by varying the magnetic field from 0 to 60 mT. Moreover, square wave magnetic field can be used to periodically generate droplets with different sizes. These results are helpful to understand the generation mechanism of the ferrofluid droplet and supply a novel method for manipulating droplets with a predetermined size and distribution.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925

  2. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364

  3. Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75:046302

  4. Diguet A, Guillermic RM, Magome N, Saint-Jalmes A, Chen Y, Yoshikawa K, Baigl D (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed Engl 48:9281–9284

  5. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70:4974–4984

  6. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

  7. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

  8. Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501

  9. Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8:1244–1254

  10. Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463

  11. Jeong WJ, Kim JY, Choo J, Lee EK, Han CS, Beebe DJ, Seong GH, Lee SH (2005) Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21:3738–3741

  12. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556–2560

  13. Liu J, Yap YF, Nguyen N-T (2011) Numerical study of the formation process of ferrofluid droplets. Phys Fluids (1994–present) 23:072008

  14. Nguyen N-T (2011) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

  15. Nguyen N-T, Ting T-H, Yap Y-F, Wong T-N, Chai JC-K, Ong W-L, Zhou J, Tan S-H, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91:084102

  16. Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128:9408–9412

  17. Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5:585–594

  18. Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26

  19. Pipper J, Inoue M, Ng LF, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13:1259–1263

  20. Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106

  21. Rich JP, Lammerding J, McKinley GH, Doyle PS (2011) Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter 7:9933

  22. Ruuge E, Rusetski A (1993) Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field. J Magn Magn Mater 122:335–339

  23. Schmid L, Franke T (2013) SAW-controlled drop size for flow focusing. Lab Chip 13:1691–1694

  24. Shui L, van den Berg A, Eijkel JCT (2009) Capillary instability, squeezing, and shearing in head-on microfluidic devices. J Appl Phys 106:124305

  25. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45:7336–7356

  26. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

  27. Tan S-H, Nguyen N-T (2011) Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations. Phys Rev E 84:036317

  28. Tan Y-C, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114:350–356

  29. Tan S-H, Nguyen N-T, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J Micromech Microeng 20:045004

  30. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

  31. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

  32. Velev OD, Prevo BG, Bhatt KH (2003) On-chip manipulation of free droplets. Nature 426:515–516

  33. Woodward A, Cosgrove T, Espidel J, Jenkins P, Shaw N (2007) Monodisperse emulsions from a microfluidic device, characterised by diffusion NMR. Soft Matter 3:627

  34. Wu Y, Fu T, Ma Y, Li HZ (2013) Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter 9:9792

  35. Xu J, Li S, Tan J, Wang Y, Luo G (2006) Preparation of highly monodisperse droplet in a T-junction microfluidic device. AlChE J 52:3005–3010

  36. Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079

  37. Zhang K, Liang Q, Ma S, Mu X, Hu P, Wang Y, Luo G (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9:2992–2999

Download references

Acknowledgements

This work was supported by Collaborative Innovation Center of Suzhou Nano Science and Technology. Financial support from the National Natural Science Foundation of China (Grant No. 11125210), the National Basic Research Program of China (973 Program, Grant No.2012CB937500) and the Anhui Provincial Natural Science Foundation of China (1408085QA17) is gratefully acknowledged.

Author information

Correspondence to Xinglong Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 4153 kb)

Supplementary material 2 (WMV 2610 kb)

Supplementary material 3 (WMV 3570 kb)

Supplementary material 4 (WMV 2816 kb)

Supplementary material 5 (WMV 5499 kb)

Supplementary material 6 (WMV 8227 kb)

Supplementary material 1 (WMV 4153 kb)

Supplementary material 2 (WMV 2610 kb)

Supplementary material 3 (WMV 3570 kb)

Supplementary material 4 (WMV 2816 kb)

Supplementary material 5 (WMV 5499 kb)

Supplementary material 6 (WMV 8227 kb)

Supplementary material 7 (PDF 550 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Xuan, S., Ruan, X. et al. Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluid 19, 1377–1384 (2015). https://doi.org/10.1007/s10404-015-1652-7

Download citation

Keywords

  • Microfluidic
  • Magnetic
  • Ferrofluid
  • Flow-focusing
  • Droplets