Microfluidics and Nanofluidics

, Volume 19, Issue 6, pp 1335–1348 | Cite as

Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis

  • Aldo FrezzottiEmail author
  • Hacene Si Hadj Mohand
  • Christine Barrot
  • Stéphane Colin
Research Paper


The molecular tagging velocimetry (MTV) is a well-suited technique for velocity field measurement in gas flows. Typically, a line is tagged by a laser beam within the gas flow seeded with light emitting acetone molecules. Positions of the luminescent molecules are then observed at successive times and the velocity field is deduced from the analysis of the tagged line displacement and deformation. However, the displacement evolution is expected to be affected by molecular diffusion, when the gas is rarefied. Therefore, there is no direct and simple relationship between the velocity field and the measured displacement of the initial tagged line. This paper addresses the study of tracer molecules diffusion through a background gas flowing in a channel delimited by planar walls. Tracer and background species are supposed to be governed by a system of coupled Boltzmann equations, numerically solved by the direct simulation Monte Carlo (DSMC) method. Simulations confirm that the diffusion of tracer species becomes significant as the degree of rarefaction of the gas flow increases. It is shown that a simple advection–diffusion equation provides an accurate description of tracer molecules behavior, in spite of the non-equilibrium state of the background gas. A simple reconstruction algorithm based on the advection–diffusion equation has been developed to obtain the velocity profile from the displacement field. This reconstruction algorithm has been numerically tested on DSMC generated data. Results help estimating an upper bound on the flow rarefaction degree, above which MTV measurements might become problematic.


Molecular tagging velocimetry Microflows Direct simulation Monte Carlo 

Mathematics Subject Classification




This research obtained financial support from the European Community Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 215504, from the Fédération de Recherche Fermat, FR 3089, and from the Project 30176ZE of the PHC GALILEE 2014 Program. The latter is supported by the Ministère des Affaires Etrangères et du Développement International (MAEDI) and the Ministère de l’Enseignement Supérieur et de la Recherche (MENESR).


  1. Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43CrossRefzbMATHGoogle Scholar
  2. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, OxfordGoogle Scholar
  3. Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006) Convergence of Chapman–Enskog calculation of transport coefficients of magnetized Argon plasma. Phys Plasmas 13(7):072307CrossRefGoogle Scholar
  4. Cattafesta LN, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272CrossRefGoogle Scholar
  5. Cercignani C (1988) The Boltzmann equation and its applications. Springer, BerlinCrossRefzbMATHGoogle Scholar
  6. Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1:268–279CrossRefGoogle Scholar
  7. Colin S (2012) Gas microflows in the slip flow regime: a critical review on convective heat transfer. J Heat Transf Trans ASME 134:020908CrossRefGoogle Scholar
  8. Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25:23–30CrossRefGoogle Scholar
  9. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  10. Dongari N, Sharma A, Durst F (2009) Pressure-driven diffusive gas flows in micro-channels: from the Knudsen to the continuum regimes. Microfluid Nanofluid 6(5):679–692CrossRefGoogle Scholar
  11. ElBaz A, Pitz R (2012) N\(_2\)O molecular tagging velocimetry. Appl Phys B Lasers Opt 106(4):961–969. doi: 10.1007/s00340-012-4872-5 CrossRefGoogle Scholar
  12. Elsnab JR, Maynes D, Klewicki JC, Ameel TA (2010) Mean flow structure in high aspect ratio microchannel flows. Exp Therm Fluid Sci 34:1077–1088CrossRefGoogle Scholar
  13. Ewart T, Perrier P, Graur I, Meolans JG (2006) Mass flow rate measurements in gas micro flows. Exp Fluids 41:487–498CrossRefGoogle Scholar
  14. Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland, AmsterdamGoogle Scholar
  15. Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23:361–372CrossRefGoogle Scholar
  16. Hammer P, Pouya S, Naguib A, Koochesfahani M (2013) A multi-time-delay approach for correction of the inherent error in single-component molecular tagging velocimetry. Meas Sci Technol 24:105302CrossRefGoogle Scholar
  17. Hu H, Koochesfahani MM (2006) Molecular tagging techniques for micro-flow and micro-scale heat transfer studies. In: Proceedings of FEDSM09. ASME, FEDSM2009-78059Google Scholar
  18. Ismailov M, Schock H, Fedewa A (2006) Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry. Exp Fluids 41:57–65CrossRefGoogle Scholar
  19. Kandlikar SG, Colin S, Peles Y, Garimella S, Pease RF et al (2013) Heat transfer in microchannels—2012 status and research needs. J Heat Transf Trans ASME 135(9):091001. doi: 10.1115/1.4024354 CrossRefGoogle Scholar
  20. Kaskan WE, Duncan ABF (1950) Mean lifetime of the fluorescence of acetone and biacetyl vapors. J Chem Phys 18(4):427–431CrossRefGoogle Scholar
  21. Koochesfahani MM (1999) Molecular tagging velocimetry (MTV): progress and applications. In: 30th AIAA fluid dynamics conference, Norfolk, VA, AIAA99-3786Google Scholar
  22. Koochesfahani MM, Nocera DG (2007) Molecular tagging velocimetry. In: Tropea C, Yarin AL, Foss JF (eds) Handbook of experimental fluid dynamics, chap. 5.4. Springer, Berlin, pp 362–382Google Scholar
  23. Kovach KM, LaBarbera MA, Moyer MC, Cmolik BL, van Lunteren E et al (2015) In vitro evaluation and in vivo demonstration of a biomimetic, hemocompatible, microfluidic artificial lung. Lab Chip 15:1366–1375. doi: 10.1039/C4LC01284D CrossRefGoogle Scholar
  24. Lempert WR, Boehm M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34:403–411CrossRefGoogle Scholar
  25. Lempert WR, Ronney P, Magee K, Gee KR, Haugland RP (1995) Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM). Exp Fluids 18:249–257CrossRefGoogle Scholar
  26. Louisos W, Hitt DL (2005) Influence of wall heat transfer on supersonic MicroNozzle performance. J Spacecr Rockets 49:1123–1131Google Scholar
  27. Lu CJ, Steinecker WH, Tian WC, Oborny MC, Nichols JM et al (2005) First-generation hybrid MEMS gas chromatograph. Lab Chip 5:1123–1131CrossRefGoogle Scholar
  28. Matsuda Y, Misaki R, Yamaguchi H, Niimi T (2011a) Pressure-sensitive channel chip for visualization measurement of micro gas flows. Microfluid Nanofluid 11:507–510CrossRefGoogle Scholar
  29. Matsuda Y, Uchida T, Suzuki S, Misaki R, Yamaguchi H et al (2011b) Pressure-sensitive molecular film for investigation of micro gas flows. Microfluid Nanofluid 10:165–171CrossRefGoogle Scholar
  30. Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15:2613–2621CrossRefGoogle Scholar
  31. Morini GL, Yang Y, Chalabi H, Lorenzini M (2011) A critical review of the measurement techniques for the analysis of gas microflows through microchannels. Exp Therm Fluid Sci 35:849–865CrossRefGoogle Scholar
  32. Niu C, Hao Y z, Li D, Lu D (2014) Second-order gas-permeability correlation of shale during slip flow. SPE J 19:786–792CrossRefGoogle Scholar
  33. Perrier P, Graur IA, Ewart T, Meolans JG (2011) Mass flow rate measurements in microtubes: from hydrodynamic to near free molecular regime. Phys Fluids 23:042004CrossRefGoogle Scholar
  34. Pitakarnnop J, Varoutis S, Valougeorgis D, Geoffroy S, Baldas L et al (2010) A novel experimental setup for gas microflows. Microfluid Nanofluid 8:57–72CrossRefGoogle Scholar
  35. Pitz RW, Lahr MD, Douglas ZW, Wehrmeyer JA, Hu S et al (2005) Hydroxyl tagging velocimetry in a supersonic flow over a cavity. Appl Opt 44:6692–6700CrossRefGoogle Scholar
  36. Resibois P, de Leener M (1977) Classical kinetic theory of fluids. Wiley, New YorkGoogle Scholar
  37. Samouda F, Barrot C, Colin S, Baldas L, Laurien N (2012a) Analysis of gaseous flows in microchannels by molecular tagging velocimetry. In: Proceedings of the ASME 2012 10th international conference on nanochannels, microchannels and minichannels (ICNMM2012). ASME, pp 221–228. ISBN 978-0-7918-4479-3Google Scholar
  38. Samouda F, Brandner JJ, Barrot C, Colin S (2012b) Velocity field measurements in gas phase internal flows by molecular tagging velocimetry. J Phys. In: Conference series—proceedings of 1st European conference on gas MicroFlows (GASMEMS2012), vol 362, p 012026Google Scholar
  39. Samouda F, Colin S, Barrot C, Baldas L, Brandner JJ (2015) Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems. Microsyst Technol 21:527–537CrossRefGoogle Scholar
  40. Schembri F, Bodiguel H, Colin A (2015) Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions. Soft Matter 11:169–178CrossRefGoogle Scholar
  41. Seungdo A, Gupta NK, Gianchandani YB (2014) A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum. J Microelectromech Syst 23:406–416CrossRefGoogle Scholar
  42. Sharipov F (2011) Data on the velocity slip and temperature jump on a gas–solid interface. J Phys Chem Ref Data 40:023101CrossRefGoogle Scholar
  43. Stier B, Koochesfahani MM (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26:297–304CrossRefGoogle Scholar
  44. Sugii Y, Okamoto K (2006) Velocity measurement of gas flow using micro PIV technique in polymer electrolyte fuel cell. In: Proceedings of 4th international conference on nanochannels, microchannels and minichannels. ASME, pp 533–538Google Scholar
  45. Thompson BR, Maynes D, Webb BW (2005) Characterization of the hydrodynamically developing flow in a microtube using MTV. J Fluids Eng 127:1003–1012CrossRefGoogle Scholar
  46. Yang Y, Gerken I, Brandner JJ, Morini GL (2014) Design and experimental investigation of a gas-to-gas counter flow micro heat exchanger. Exp Heat Transf 27:340–359CrossRefGoogle Scholar
  47. Yoon SY, Ross JW, Mench MM, Sharp KV (2006) Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels. J Power Sour 160:1017–1025CrossRefGoogle Scholar
  48. Zhang WM, Meng G, Wei X (2012) A review on slip models for gas microflows. Microfluid Nanofluid 13:845–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aldo Frezzotti
    • 1
    Email author
  • Hacene Si Hadj Mohand
    • 2
  • Christine Barrot
    • 2
  • Stéphane Colin
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie AerospazialiPolitecnico di MilanoMilanItaly
  2. 2.Institut Clément AderUniversité de ToulouseToulouseFrance

Personalised recommendations