Microfluidics and Nanofluidics

, Volume 19, Issue 5, pp 1139–1158 | Cite as

On the visualization of droplet deformation and breakup during high-pressure homogenization

  • K. Kelemen
  • S. Gepperth
  • R. Koch
  • H.-J. Bauer
  • Heike P. Schuchmann
Research Paper

Abstract

The properties of emulsions are strongly influenced by the size distribution of the droplets. In order to achieve droplets on a microscale, high-pressure homogenization is used to transfer stresses to the droplet surface in the flow field upstream, in and downstream the disruption unit of the homogenizer. The droplets are deformed and eventually break up when exceeding critical values. Inline measurement techniques are still very challenging, due to highly complex flow conditions on microscales, high process pressures and large velocities. In this work, the optical flow measurement technique micro particle image velocimetry (μPIV) is used to quantify the flow field, the local stresses as well as droplet deformation and breakup. A special homogenization orifice which is optical accessible enabled the visualization in the whole area of interest before, in and after the restriction up to 80 bars homogenization pressure. The study of the single-phase flow with particular focus on the local stresses showed laminar and transitional conditions at Re number ranging from 285 to 1280. Droplets of two different viscosities are then examined at these conditions while passing the orifice. At the inlet, their size, deformation and position are investigated by an automated image processing algorithm and correlated with the local velocity gradients. At the outlet and downstream, deformation and breakup of droplets are shown within the possibilities of the μPIV and discussed in relation to known droplet breakup mechanisms. Finally, the droplet size distributions offline obtained by static light scattering are compared with observed phenomena of the individual drops in order to gain insights into droplet disruption in high-pressure homogenization.

Keywords

High-pressure homogenization Droplet deformation Orifice µPIV Stresses 

List of symbols

Ca

Capillary number (–)

Cacrit

Critical Capillary number (–)

d

Diameter of the orifice (mm)

dh

Hydrodynamic diameter (mm)

dout

Diameter of the inlet and outlet of the orifice unit (mm)

D

Deformation of droplet (–)

G

Velocity gradient (1/s)

l

Length of the orifice (mm)

lE

Entrance length (mm)

L

Length of the deformed droplet (mm)

N

Number of images (–)

Δp

Homogenization pressure (bar)

Δpmax

Maximum pressure loss (bar)

r

Radius of the droplet (m)

Re

Reynolds number (–)

tdef

Critical deformation time (s)

Δt

Interframing time between two images (s)

u

Mean axial velocity (m/s)

ua

Average velocity (m/s)

um,c

Mean centerline velocity (m/s)

\(\overline{u^{{\prime }}}\)

Velocity fluctuations axial direction (m/s)

\(\overline{u^{{{\prime }2}}} /\overline{u_{m,c}^{2}}\)

Normalized velocity fluctuations axial direction (–)

x

Streamwise or axial coordinate (mm)

x50.3

Median droplet size (m)

xin/d

Normalized distance to the orifice inlet (–)

xout/d

Normalized distance to the orifice outlet (–)

y

Lateral or radial coordinate (mm)

W

Width of the deformed droplet (mm)

y/d

Normalized diameter of the orifice (–)

z

Height coordinate (mm)

Greek letters

α

Flow parameter (–)

γ

Surface tension (N/m)

\(\dot{\varvec{\gamma }}\)

Shear rate (1/s)

\(\dot{\varvec{\varepsilon }}\)

Elongational rate (1/s)

λ

Viscosity ratio (–)

ηc

Dynamic viscosity of the continuous phase (mPa s)

ηd

Dynamic viscosity of the dispersed phase (mPa s)

ρc

Density of the fluid (kg/m3)

Φ

Dispersed phase fraction (%)

τ

Stress (kg/m s2)

Abbreviations

DOC

Depth of correlation

µPIV

Micro particle image velocimetry

LV

Laminar viscous regime

PEG

Polyethylene glycol

TI

Turbulent inertia regime

TV

Turbulent viscous regime

References

  1. Aguilar FA, Köhler K, Schubert H, Schuchmann HP (2008) Herstellen von Emulsionen in einfachen und modifizierten Lochblenden: Einfluss der Geometrie auf die Effizienz der Zerkleinerung und Folgen für die Maßstabsvergrößerung. Chem Ing Tech 80:607–613CrossRefGoogle Scholar
  2. Ball CG, Fellouah H, Pollard A (2012) The flow field in turbulent round free jets. Prog Aerosp Sci 50:1–26CrossRefGoogle Scholar
  3. Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J Fluid Mech 167:241–283CrossRefMATHGoogle Scholar
  4. Blonski S, Korczyk PM, Kowalewski TA (2007) Analysis of turbulence in a micro-channel emulsifier. Int J Therm Sci 46:1126–1141CrossRefGoogle Scholar
  5. Budde C, Schaffner D, Walzel P (2002) Drop breakup in liquid-liquid dispersions at an orifice plate observed in a large-scale model. Chem Eng Technol 25:1164–1167CrossRefGoogle Scholar
  6. Danner T, Schubert H (2001). Coalescence processes in emulsions. In: Dickinson E, Miller R (eds) Food colloids: fundamentals of Formulation (Band 258). Royal Society of Chemistry, pp 116–122Google Scholar
  7. Freudig B, Tesch S, Schubert H (2003) Production of emulsions in high-pressure homogenizers—Part II: influence of cavitation on droplet breakup. Eng Life Sci 6(3):266–270CrossRefGoogle Scholar
  8. Galinat S, Masbernat O, Guiraud P, Dalmazzone C, Noik C (2005) Drop break-up in turbulent pipe flow downstream of a restriction. Chem Eng Sci 60:6511–6528CrossRefGoogle Scholar
  9. Galinat S, Torres LG, Masbernat O, Guiraud P, Risso F, Dalmazzone C, Noik C (2007) Breakup of a drop in a liquid-liquid pipe flow through an orifice. AIChE J 53(1):56–68CrossRefGoogle Scholar
  10. Gaulin A (1899) Appareil et Procédé pour la Stabilisation du Lait, Brecet nr. 295596 (patent)Google Scholar
  11. Gepperth S, Müller A, Koch R, Bauer H-J (2012) Ligament and droplet characteristics in prefilming airblast atomization. In: 12th triennial international annual conference on liquid atomization and spray systems (ICLASS)Google Scholar
  12. Gothsch T, Schilcher C, Richter C, Beinert S, Dietzel A, Büttgenbach S, Kwade A (2015) High-pressure microfluidic systems (HPMS): flow and cavitation measurements in supported silicon microsystems. Microfluid Nanofluid 18(1):121–130CrossRefGoogle Scholar
  13. Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–277CrossRefGoogle Scholar
  14. Guido S, Greco F (2004) Dynamics of a liquid drop in a flowing immiscible liquid. Rheol Rev 2:99–142Google Scholar
  15. Ha JW, Leal LG (2001) An experimental study of drop deformation and breakup in extensional flow at high capillary number. Phys Fluids 13:1568–1576CrossRefGoogle Scholar
  16. Hakansson A, Fuchs L, Innings F, Revstedt J, Tragardh C, Bergenstahl B (2011) High resolution experimental measurement of turbulent flow field in a high pressure homogenizer model and its implications on turbulent drop fragmentation. Chem Eng Sci 66(8):1790–1801CrossRefGoogle Scholar
  17. Hecht LL, Merkel T, Schoth A, Köhler K, Wagner C, Muñoz-Espí R, Landfester K, Schuchmann HP (2013a) Emulsification of particle loaded droplets with regard to miniemulsion polymerization. Chem Eng J 229:206–216CrossRefGoogle Scholar
  18. Hecht LL, Schoth A, Muñoz-Espí R, Javadi A, Köhler K, Miller R, Landfester K, Schuchmann HP (2013b) Determination of the ideal surfactant concentration in miniemulsion polymerization. Macromol Chem Phys 214:812–823CrossRefGoogle Scholar
  19. Innings F, Tragardh C (2005) Visualization of the drop deformation and break-up process in a high pressure homogenizer. Chem Eng Technol 28:882–891CrossRefGoogle Scholar
  20. Innings F, Tragardh C (2007) Analysis of the flow field in a high-pressure homogenizer. Exp Therm Fluid Sci 32(2):345–354CrossRefGoogle Scholar
  21. Innings F, Fuchs L, Tragardh C (2011) Theoretical and experimental analyses of drop deformation and break-up in a scale model of a high-pressure homogenizer. J Food Eng 103(1):21–28CrossRefGoogle Scholar
  22. Janssen JMH, Meijer HEH (1993) Droplet breakup mechanisms: stepwise equilibrium versus transient dispersion. J Rheol 37:597–608CrossRefGoogle Scholar
  23. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22:1191–1202CrossRefGoogle Scholar
  24. Johansen FC (1929) Flow through pipe orifices at low Reynolds numbers. Proc R Soc Lond 126:231–245CrossRefGoogle Scholar
  25. Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341CrossRefGoogle Scholar
  26. Karbstein H (1994) Untersuchungen zum Herstellen und Stabilisieren von Öl-in-Wasser-Emulsionen, Universität Karlsruhe (TH)Google Scholar
  27. Kelemen K (2014) Inline-Messung des Tropfenaufbruchs in Hochdruckblenden: Möglichkeiten und Limitierungen der µPIV, Karlsruher Institut für Technologie (KIT)Google Scholar
  28. Kelemen K, Crowther FE, Cierpka C, Hecht LL, Kähler CJ, Schuchmann HP (2015) Investigations on the characterization of laminar and transitional flow conditions after high pressure homogenization orifices. Microfluid Nanofluid 18(4):599–612CrossRefGoogle Scholar
  29. Köhler K, Tesch S, Freudig B, Schuchmann HP (2012) Chapter XI: Emulgieren in Hochdruckhomogenisatoren. In: Köhler K, Schuchmann HP (eds) Emulgiertechnik: Grundlagen, Verfahren und Anwendungen. 3. Behr’s Verlag, pp S.55–S.88Google Scholar
  30. Kolb G, Wagner G, Ulrich J (2001) Untersuchungen zum Aufbruch von Einzeltropfen in Dispergiereinheiten zur Emulsionsherstellung. Chem Ing Tech 73:80–83CrossRefGoogle Scholar
  31. Kolmogorov AN (1958) Über die Zerstäubung von Tropfen in einer turbulenten Strömung in Sammelband zur statistischen Theorie der Turbulenz. In: Goering H (ed). Akademie-Verlag, BerlinGoogle Scholar
  32. Liao YX, Lucas D (2009) A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci 64(15):3389–3406CrossRefGoogle Scholar
  33. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: ACM siggraph computer graphics, pp 163–169Google Scholar
  34. Massey B (1998) Mechanics of Fluids Stanley Thornes, UKGoogle Scholar
  35. McComas ST (1967) Hydrodynamic entrance lengths for ducts of arbitrary cross section. Mech Eng 89(8):847–850Google Scholar
  36. Müller A et al (2006) Performance of prefilming airblast atomizers in unsteady flow conditions. In: Proceedings of ASME Turbo Expo 2006: power for land, sea and air, GT2006-90432Google Scholar
  37. Olsen MG, Adrian RJ (2000) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 29:166–174CrossRefGoogle Scholar
  38. Pilu M, Fitzgibbon AW, Fisher RB (1996) Ellipse-specific direct least-square fitting. In: Proceedings of the international conference on image processing, pp 599–602Google Scholar
  39. Ramamurthi K, Nandakumar K (1999) Characteristics of flow through small sharp-edged cylindrical orifices. Flow Meas Instrum 10(3):133–143CrossRefGoogle Scholar
  40. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982CrossRefMATHGoogle Scholar
  41. Rossi M, Segura R, Cierpka C, Kahler CJ (2012) On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Exp Fluids 52:1063–1075CrossRefGoogle Scholar
  42. Rumscheidt FD, Mason SG (1961) Particle motions in sheared suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J Colloid Sci 16:238–261CrossRefGoogle Scholar
  43. Stang M, Schuchmann HP, Schubert H (2001) Emulsification in High-Pressure Homogenizers. Eng Life Sci 4:151–157CrossRefGoogle Scholar
  44. Stone HA, Leal LG (1989) The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. J Fluid Mech 206:223–263CrossRefGoogle Scholar
  45. Stone HA, Bentley BJ, Leal LG (1986) An experimental-study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131–158CrossRefGoogle Scholar
  46. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc 29:501–523CrossRefGoogle Scholar
  47. Tcholakova S, Lesov I, Golemanov K, Denkov ND, Judat S, Engel R, Danner T (2011) Efficient emulsification of viscous oils at high drop volume fraction. Langmuir 27(24):14783–14796CrossRefGoogle Scholar
  48. Tesch S (2002) Charakterisieren mechanischer Emulgierverfahren: Herstellen und Stabilisieren von Tropfen als Teilschritte beim Formulieren von Emulsionen, Universität Karlsruhe (TH)Google Scholar
  49. Tjahjadi M, Ottino JM (1991) Stretching and breakup of droplets in chaotic flows. J Fluid Mech 232:191–219MathSciNetCrossRefGoogle Scholar
  50. Vankova N, Tcholakova S, Denkov ND, Ivanov IB, Vulchev VD, Danner T (2007) Emulsification in turbulent flow, 1. Mean and maximum drop diameters in inertial and viscous regimes. J Colloid Interface Sci 312:363–380CrossRefGoogle Scholar
  51. Walstra P (1983) Formation of emulsions, encyclopedia of emulsion technology. In: Becher P (ed) Encyclopedia of emulsion technology. Basic theory, vol 1. Marcel Dekker Inc, New York, pp 57–128Google Scholar
  52. Wibel W (2009) Untersuchungen zu laminarer, transitioneller und turbulenter Strömung in rechteckigen Mikrokanälen, DissertationGoogle Scholar
  53. Windhab EJ, Dressler M, Feigl K, Fischer P, Megias-Alguacil D (2005) Emulsion processing-from single-drop deformation to design of complex processes and products. Chem Eng Sci 60:2101–2113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • K. Kelemen
    • 1
  • S. Gepperth
    • 2
  • R. Koch
    • 2
  • H.-J. Bauer
    • 2
  • Heike P. Schuchmann
    • 1
  1. 1.Institut für Bio- und Lebensmitteltechnik Bereich I: Lebensmittelverfahrenstechnik (LVT)Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institut für Thermische Strömungsmaschinen (ITS)Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations