Microfluidics and Nanofluidics

, Volume 19, Issue 4, pp 899–911 | Cite as

Bubbly flow and gas–liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model

  • David MikaelianEmail author
  • Benoît Haut
  • Benoit Scheid
Research Paper


A model is proposed to describe the dissolution of a chain of spherical pure gas bubbles into a nonvolatile liquid, along square and circular microchannels. The gas–liquid interface is considered stress-free or rigid. This model enables predicting, in each considered case, the evolution along the microchannel of the bubble diameter, the bubble velocity, the separation distance between two successive bubbles, the liquid fraction, the pressure in both the liquid and the gas phases, the concentration of the dissolved gas in the liquid phase and the mass transfer coefficient between the bubble and the liquid phase. The influence on the gas dissolution of the interfacial boundary condition, the microchannel type, the operating conditions and the physicochemical properties of the liquid and gas is analyzed. Existing experimental data for a nearly square microchannel are convincingly reproduced using the model. The validity and the different applications of the model are also discussed.


Microfluidics Absorption Square microchannel  Circular microchannel Bubbly flow Spherical bubbles 



The authors thank Sam Dehaeck for the useful comment about the possible volatility of the liquid. D.M. and B.S. acknowledge the Fonds de la Recherche Scientifique (F.R.S.-F.N.R.S.) for their financial contribution. This research has been performed under the umbrella of the COST action MP1106 and also takes part in the Inter-university Attraction Pole Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.


  1. Abolhasani M, Gunther A, Kumacheva E (2014) Microfluidic studies of carbon dioxide. Angew Chem Int Ed 53:2–13CrossRefGoogle Scholar
  2. Bruus H (2008) Theoretical microfluidics, vol 18. Oxford University Press, Oxford, pp 41–50, 75Google Scholar
  3. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New YorkGoogle Scholar
  4. Cubaud T, Ho CM (2004) Transport of bubbles in square microchannels. Phys Fluids 16:4575CrossRefGoogle Scholar
  5. Cubaud T, Sauzade M, Sun R (2012) \({\text{CO}}_2\) dissolution in water using long serpentine microchannels. Biomicrofluidics 6:022002CrossRefGoogle Scholar
  6. Haberman WL, Morton RK (1953) An experimental investigation of the drag and shape of air bubbles rising in various liquids. David Taylor Model Basin, Report 802Google Scholar
  7. Kashid MN, Renken A, Kiwi-Minsker L (2011) Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chem Eng Sci 66(17):3876–3897CrossRefGoogle Scholar
  8. Kim N, Evans ET, Park DS, Soper SA, Murphy MC, Nikitopoulos DE (2011) Gas–liquid two-phase flows in rectangular polymer micro-channels. Exp Fluids 51(2):373–393CrossRefGoogle Scholar
  9. Leitner W (2002) Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res 35:746–756CrossRefGoogle Scholar
  10. Mikaelian D, Haut B, Scheid B (2015) Bubbly flow and gas–liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces. CFD analysis. Microfluid Nanofluid. doi: 10.1007/s10404-015-1578-0
  11. Park JI, Nie Z, Kumachev A, Abdelrahman AI, Binks BP, Stone HA, Kumacheva E (2009) A microfluidic approach to chemically driven assembly of colloidal particles at gas–liquid interfaces. Angew Chem Int Ed 48:5300–5304CrossRefGoogle Scholar
  12. Shim S, Wan J, Hilgenfeldt S, Panchal PD, Stone HA (2014) Dissolution without disappearing: multicomponent gas exchange for \({\text{CO}}_2\) bubbles in a microfluidic channel. Lab Chip 14(14):2428–2436CrossRefGoogle Scholar
  13. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45(44):7336–7356CrossRefGoogle Scholar
  14. Stan CA, Guglielmini L, Ellerbee AK, Caviezel D, Stone HA, Whitesides GM (2011) Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys Rev E 84:036302CrossRefGoogle Scholar
  15. Sun R, Cubaud T (2011) Dissolution of carbon dioxide bubbles and microfluidic multiphase flows. Lab Chip 11:2924–2928CrossRefGoogle Scholar
  16. Terwagne D, Brojan M, Reis PM (2014) Smart morphable surfaces for aerodynamic drag control. Adv Mater 26:6608CrossRefGoogle Scholar
  17. Thiele J, Abate AR, Shum HC, Bachtler S, Frster S, Weitz DA (2010) Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices. Small 6:1723–1727CrossRefGoogle Scholar
  18. Trana V-T, Benot J-P, Venier-Julienne M-C (2011) Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int J Pharm 407:1–11CrossRefGoogle Scholar
  19. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL (1999a) Gas–liquid two-phase flow in microchannels, Part I: two-phase flow patterns. Int J Multiph Flow 25(3):377–394zbMATHCrossRefGoogle Scholar
  20. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, LeMouel A, McCord BN (1999b) Gas–liquid two-phase flow in microchannels, Part II: void fraction and pressure drop. Int J Multiph Flow 25(3):395–410zbMATHCrossRefGoogle Scholar
  21. Voicu D, Abolhasani M, Choueiri R, Lestari G, Seiler C, Menard G, Greener J, Guenther A, Stephan DW, Kumacheva E (2014) Microfluidic studies of \({\text{CO}}_2\) sequestration by frustrated Lewis pairs. J Am Chem Soc 136:3875–3880CrossRefGoogle Scholar
  22. Yue J, Chen G, Yuan Q, Luo L, Gonthier Y (2007) Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel. Chem Eng Sci 62(7):2096–2108CrossRefGoogle Scholar
  23. Ziemecka I, van Steijn V, Koper GJM, Kreutzer MT, van Esch JH (2011a) All-aqueous core–shell droplets produced in a microfluidic device. Soft Matter 7:9878–9880CrossRefGoogle Scholar
  24. Ziemecka I, van Steijn V, Koper GJM, Rosso M, Brizard AM, van Esch JH, Kreutzer MT (2011b) Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip 11:620–624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Transfers, Interfaces and Processes (TIPs), CP 165/67Université libre de BruxellesBrusselsBelgium

Personalised recommendations