Microfluidics and Nanofluidics

, Volume 19, Issue 3, pp 483–495 | Cite as

Manipulation of liquid marbles

  • Chin Hong Ooi
  • Nam-Trung Nguyen


A liquid marble is a liquid droplet coated with hydrophobic powder which enables the marble to be manipulated like a soft solid. Recently, liquid marbles have been used in applications such as microbioreactors for three-dimensional cell cultures and could be a new platform for digital microfluidics. Despite its potential significance, there is a lack of a systematic, thorough review and discussion on the manipulation schemes for liquid marbles. This paper presents past and recent manipulation schemes for liquid marbles. This paper discusses the major working principles, their advantages and drawbacks. Finally, the paper concludes with recent applications and the challenges of this research area.


Coating Material Liquid Droplet Capillary Number Superhydrophobic Surface Liquid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arbatan T, Al-Abboodi A et al (2012a) Tumor inside a pearl drop. Adv Healthc Mater 1(4):467–469CrossRefGoogle Scholar
  2. Arbatan T, Li L et al (2012b) Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater 1(1):80–83CrossRefGoogle Scholar
  3. Aussillous P, Quere D (2001) Liquid marbles. Nature 411(6840):924–927CrossRefGoogle Scholar
  4. Aussillous P, Quere D (2004) Shapes of rolling liquid drops. J Fluid Mech 512:133–151CrossRefzbMATHGoogle Scholar
  5. Aussillous P, Quere D (2006) Properties of liquid marbles. Proc R Soc A Math Phys Eng Sci 462(2067):973–999CrossRefzbMATHGoogle Scholar
  6. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8CrossRefGoogle Scholar
  7. Bhosale PS, Panchagnula MV (2010) On synthesizing solid polyelectrolyte microspheres from evaporating liquid marbles. Langmuir 26(13):10745–10749CrossRefGoogle Scholar
  8. Bhosale PS, Panchagnula MV et al (2008) Mechanically robust nanoparticle stabilized transparent liquid marbles. Appl Phys Lett 93(3):034109CrossRefGoogle Scholar
  9. Bormashenko E (2011) Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci 16(4):266–271CrossRefGoogle Scholar
  10. Bormashenko E (2012) New insights into liquid marbles. Soft Matter 8(43):11018–11021CrossRefGoogle Scholar
  11. Bormashenko E, Musin A (2009) Revealing of water surface pollution with liquid marbles. Appl Surf Sci 255(12):6429–6431CrossRefGoogle Scholar
  12. Bormashenko E, Pogreb R et al (2008) New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Langmuir 24(21):12119–12122CrossRefGoogle Scholar
  13. Bormashenko E, Bormashenko Y et al (2009a) Water rolling and floating upon water: marbles supported by a water/marble interface. J Colloid Interface Sci 333(1):419–421CrossRefGoogle Scholar
  14. Bormashenko E, Bormashenko Y et al (2009b) On the mechanism of floating and sliding of liquid marbles. ChemPhysChem 10(4):654–656CrossRefGoogle Scholar
  15. Bormashenko E, Pogreb R et al (2009c) Shape, vibrations, and effective surface tension of water marbles. Langmuir 25(4):1893–1896CrossRefGoogle Scholar
  16. Bormashenko E, Balter R et al. (2010a) Micropump based on liquid marbles. Appl Phys Lett 97(9):091908CrossRefGoogle Scholar
  17. Bormashenko E, Bormashenko Y et al (2010b) Janus droplets: liquid marbles coated with dielectric/semiconductor particles. Langmuir 27(1):7–10CrossRefGoogle Scholar
  18. Bormashenko E, Pogreb R et al (2010c) Interfacial and conductive properties of liquid marbles coated with carbon black. Powder Technol 203(3):529–533CrossRefGoogle Scholar
  19. Bormashenko E, Pogreb R et al (2012a) Stable water and glycerol marbles immersed in organic liquids: from liquid marbles to Pickering-like emulsions. J Colloid Interface Sci 366(1):196–199CrossRefGoogle Scholar
  20. Bormashenko E, Pogreb R et al (2012b) Electrically deformable liquid marbles. J Adhes Sci Technol 25(12):1371–1377CrossRefGoogle Scholar
  21. Bormashenko E, Pogreb R et al. (2012c) Composite non-stick droplets and their actuation with electric field. Appl Phys Lett 100(15):151601CrossRefGoogle Scholar
  22. Braun H-G, Cardoso AZ (2012) Self-assembly of Fmoc-diphenylalanine inside liquid marbles. Colloids Surf B 97:43–50CrossRefGoogle Scholar
  23. Cengiz U, Erbil HY (2013) The lifetime of floating liquid marbles: the influence of particle size and effective surface tension. Soft Matter 9(37):8980–8991CrossRefGoogle Scholar
  24. Chin JM, Reithofer MR et al (2013) Supergluing MOF liquid marbles. Chem Commun 49(5):493–495CrossRefGoogle Scholar
  25. Dalbe M-J, Cosic D et al. (2011) Aggregation of frictional particles due to capillary attraction. Phys Rev E 83(5):051403CrossRefGoogle Scholar
  26. Dandan M, Erbil HY (2009) Evaporation rate of graphite liquid marbles: comparison with water droplets. Langmuir 25(14):8362–8367CrossRefGoogle Scholar
  27. Doganci MD, Sesli BU et al (2011) Liquid marbles stabilized by graphite particles from aqueous surfactant solutions. Colloids Surf A 384(1–3):417–426CrossRefGoogle Scholar
  28. Dorvee JR, Derfus AM et al (2004) Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nat Mater 3(12):896–899CrossRefGoogle Scholar
  29. Dupin D, Armes SP et al (2009) Stimulus-responsive liquid marbles. J Am Chem Soc 131(15):5386–5387CrossRefGoogle Scholar
  30. Erbil HY, McHale G et al (2002) Drop evaporation on solid surfaces: constant contact angle mode. Langmuir 18(7):2636–2641CrossRefGoogle Scholar
  31. Eshtiaghi N, Hapgood KP (2012) A quantitative framework for the formation of liquid marbles and hollow granules from hydrophobic powders. Powder Technol 223:65–76CrossRefGoogle Scholar
  32. Eshtiaghi N, Arhatari B et al (2009) Producing hollow granules from hydrophobic powders in high-shear mixer granulators. Adv Powder Technol 20(6):558–566CrossRefGoogle Scholar
  33. Eshtiaghi N, Liu JJS et al (2010) Formation of hollow granules from liquid marbles: small scale experiments. Powder Technol 197(3):184–195CrossRefGoogle Scholar
  34. Finn R (1986) Equilibrium capillary surfaces. Springer, New YorkCrossRefzbMATHGoogle Scholar
  35. Fujii S, Murakami R (2008) Smart particles as foam and liquid marble stabilizers. KONA Powder Particle J 26:153–166CrossRefGoogle Scholar
  36. Fujii S, Kameyama S et al (2010) pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles. Soft Matter 6(3):635–640CrossRefGoogle Scholar
  37. Fujii S, Suzaki M et al (2011) Liquid marbles prepared from pH-responsive sterically stabilized latex particles. Langmuir 27(13):8067–8074CrossRefGoogle Scholar
  38. Fujishige S, Kubota K et al (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). Journal Phys Chem 93(8):3311–3313CrossRefGoogle Scholar
  39. Gao L, McCarthy TJ (2007) Ionic Liquid Marbles. Langmuir 23(21):10445–10447CrossRefGoogle Scholar
  40. Guan Y, Meng X et al (2014) Hollow microsphere with mesoporous shell by pickering emulsion polymerization as a potential colloidal collector for organic contaminants in water. Langmuir 30(13):3681–3686CrossRefGoogle Scholar
  41. Hashmi A, Strauss A et al (2012) Freezing of a liquid marble. Langmuir 28(28):10324–10328CrossRefGoogle Scholar
  42. Inoue M, Fujii S et al (2011) pH-responsive disruption of ‘liquid marbles’ prepared from water and poly(6-(acrylamido) hexanoic acid)-grafted silica particles. Polym J 43(9):778–784CrossRefGoogle Scholar
  43. Kralchevsky PA, Nagayama K (2000) Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv Colloid Interface Sci 85(2–3):145–192CrossRefGoogle Scholar
  44. Laborie B, Lachaussee F et al (2013) How coatings with hydrophobic particles may change the drying of water droplets: incompressible surface versus porous media effects. Soft Matter 9(19):4822–4830CrossRefGoogle Scholar
  45. Lee DG, Kim HY (2008) Impact of a superhydrophobic sphere onto water. Langmuir 24(1):142–145CrossRefGoogle Scholar
  46. Mahadevan L, Pomeau Y (1999) Rolling droplets. Phys Fluids 11(9):2449–2453MathSciNetCrossRefzbMATHGoogle Scholar
  47. Matsukuma D, Watanabe H et al (2013) Preparation of poly(lactic-acid)-particle stabilized liquid marble and the improvement of its stability by uniform shell formation through solvent vapor exposure. RSC Adv 3(21):7862–7866CrossRefGoogle Scholar
  48. McEleney P, Walker GM et al (2009) Liquid marble formation using hydrophobic powders. Chem Eng J 147(2–3):373–382CrossRefGoogle Scholar
  49. McHale G, Shirtcliffe NJ et al. (2007) Self-organization of hydrophobic soil and granular surfaces. Appl Phys Lett 90(5):054110CrossRefGoogle Scholar
  50. McHale G, Newton MI (2011) Liquid marbles: principles and applications. Soft Matter 7(12):5473–5481CrossRefGoogle Scholar
  51. Mele E, Bayer IS et al (2014) Biomimetic approach for liquid encapsulation with nanofibrillar cloaks. Langmuir 30(10):2896–2902CrossRefGoogle Scholar
  52. Miao YE, Lee HK et al (2014) Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chem Commun (Camb) 50(44):5923–5926CrossRefGoogle Scholar
  53. Nakai K, Fujii S et al (2013) Ultraviolet-light-responsive Liquid Marbles. Chem Lett 42(6):586–588CrossRefGoogle Scholar
  54. Newton MI, Herbertson DL et al (2007) Electrowetting of liquid marbles. J Phys D Appl Phys 40(1):20–24CrossRefGoogle Scholar
  55. Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16CrossRefGoogle Scholar
  56. Nguyen NT (2013) Deformation of ferrofluid marbles in the presence of a permanent magnet. Langmuir 29(45):13982–13989CrossRefGoogle Scholar
  57. Ogawa S, Watanabe H et al (2014) Liquid marbles supported by monodisperse poly(methylsilsesquioxane) particles. Langmuir 30(30):9071–9075CrossRefGoogle Scholar
  58. Pike N, Richard D et al (2002) How aphids lose their marbles. Proc R Soc B Biol Sci 269(1497):1211–1215CrossRefGoogle Scholar
  59. Planchette C, Biance AL et al. (2013) Coalescence of armored interface under impact. Phys Fluids 25:042104CrossRefGoogle Scholar
  60. Richard D, Quere D (1999) Viscous drops rolling on a tilted non-wettable solid. Europhys Lett 48(3):286–291CrossRefGoogle Scholar
  61. Sarvi F, Jain K et al (2014) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1):77–86CrossRefGoogle Scholar
  62. Singh P, Joseph DD (2005) Fluid dynamics of floating particles. J Fluid Mech 530:31–80MathSciNetCrossRefzbMATHGoogle Scholar
  63. Sivan V, Tang S-Y et al (2013) Liquid metal marbles. Adv Funct Mater 23(2):144–152CrossRefGoogle Scholar
  64. Tan TTY, Ahsan A et al (2014) Photoresponsive liquid marbles and dry water. Langmuir 30(12):3448–3454CrossRefGoogle Scholar
  65. Tian J, Arbatan T et al (2010a) Liquid marble for gas sensing. Chem Commun 46(26):4734–4736CrossRefGoogle Scholar
  66. Tian J, Arbatan T et al (2010b) Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chem Eng J 165(1):347–353CrossRefGoogle Scholar
  67. Tian J, Fu N et al (2013) Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B 106:187–190CrossRefGoogle Scholar
  68. Tosun A, Erbil HY (2009) Evaporation rate of PTFE liquid marbles. Appl Surf Sci 256(5):1278–1283CrossRefGoogle Scholar
  69. Ueno K, Hamasaki S et al (2014) Microcapsules fabricated from liquid marbles stabilized with latex particles. Langmuir 30(11):3051–3059CrossRefGoogle Scholar
  70. Vallet M, Berge B et al (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37(12):2465–2470CrossRefGoogle Scholar
  71. Vassileva ND, van den Ende D et al (2005) capillary forces between spherical particles floating at a liquid–liquid interface. Langmuir 21(24):11190–11200CrossRefGoogle Scholar
  72. Whitby CP, Bian X et al (2012) Spontaneous liquid marble formation on packed porous beds. Soft Matter 8(44):11336–11342CrossRefGoogle Scholar
  73. Whitby CP, Bian X et al (2013) Rolling, penetration and evaporation of alcohol–water drops on coarse and fine hydrophobic powders. Colloids Surf A 436:639–646CrossRefGoogle Scholar
  74. Wu H, Watanabe H et al (2013) Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir 29(48):14971–14975CrossRefGoogle Scholar
  75. Xue Y, Wang H et al (2010) Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater 22(43):4814–4818MathSciNetCrossRefGoogle Scholar
  76. Yan C, Li M et al (2011) Progress in Liquid Marbles. Prog Chem 23(4):649–656Google Scholar
  77. Yang Z, Halvorsen E et al (2012) Power generation from conductive droplet sliding on electret film. Appl Phys Lett 100(21):213905CrossRefGoogle Scholar
  78. Yusa S-I, Morihara M et al (2014) Thermo-responsive liquid marbles. Polym J 46(3):145–148CrossRefGoogle Scholar
  79. Zang D, Chen Z et al (2013) Effect of particle hydrophobicity on the properties of liquid water marbles. Soft Matter 9(20):5067CrossRefGoogle Scholar
  80. Zang D, Lin K et al (2014) Tunable shape transformation of freezing liquid water marbles. Soft Matter 10(9):1309–1314CrossRefGoogle Scholar
  81. Zeng H, Zhao Y (2010) Dynamic behavior of a liquid marble based accelerometer. Appl Phys Lett 96(11):114104CrossRefGoogle Scholar
  82. Zhang L, Cha D et al (2012) Remotely controllable liquid marbles. Adv Mater 24(35):4756–4760CrossRefGoogle Scholar
  83. Zhao Y, Fang J et al (2010) magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater 22(6):707–710CrossRefGoogle Scholar
  84. Zhao Y, Xu ZG et al (2012) Magnetic liquid marbles, their manipulation and application in optical probing. Microfluid Nanofluid 13(4):555–564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology CentreGriffith UniversityBrisbaneAustralia

Personalised recommendations