Microfluidics and Nanofluidics

, Volume 19, Issue 2, pp 375–383 | Cite as

Ultra-low-cost ‘paper-and-pencil’ device for electrically controlled micromixing of analytes

  • Ranabir Dey
  • Shantimoy Kar
  • Sumit Joshi
  • Tapas K. Maiti
  • Suman ChakrabortyEmail author
Research Paper


We demonstrate here a frugal, printing-based fabrication methodology for paper channels, in an effort towards developing an inexpensive micromixing device. The proposed fabrication methodology utilizes the normal ink-jet cartridge ink to create the barriers for the paper channels, without involving any additional complex materials or intermediary ink modification steps. We show through experimental observations, and pertinent scaling analysis, that the electrokinetic effects, along with the capillary and viscous forces, play a significant role in enhancing the liquid transport rate through such a paper channel under an applied electrical potential, in comparison with that observed due to natural imbibition. Thereafter, we delineate the modality of active electrical control of mixing of two liquids in such a printed ‘zigzag’ ‘paper-and-pencil’ device, by exploiting the interplay between the electrohydrodynamic flows stemming from the electrokinetic phenomena and the specific channel geometry. The electrokinetically mediated flow of the liquid samples through the ‘zigzag’ paper channel can be judiciously controlled to either appreciably enhance the mixing characteristics or artificially maintain the segregation of the liquid streams by overriding the inherent wicking action-driven mixing within the paper matrix. Hence, the present endeavour will usher in a new generation of paper microfluidic platforms for micromixing, with enhanced production feasibility, controllability, functioning efficiency, and multiplexing capability.


‘Paper-and-pencil’ devices Paper microfluidics Electrokinetics Paper-based mixing Hue-based technique 



Ranabir Dey and Shantimoy Kar greatly acknowledge Ms. Deepika Malpani and Mr. Prasad Gosavi from Anton Paar for facilitating the measurement of the surface potential of the paper channel by using the Electrokinetic analyser for solid surfaces (Anton Paar GmbH). Shantimoy Kar greatly acknowledges Council of Scientific and Industrial Research (CSIR), India, for his research fellowship.

Supplementary material

Supplementary material 1 (MP4 9310 kb)


  1. Abadian Arash SJ-A (2014) Paper-based digital microfluidics. Microfluid Nanofluid 16:989–995. doi: 10.1007/s10404-014-1345-7 CrossRefGoogle Scholar
  2. Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84(22):9729–9737CrossRefGoogle Scholar
  3. Arun RK, Halder S, Chanda N, Chakraborty S (2014) A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes. Lab Chip 14(10):1661–1664. doi: 10.1039/c4lc00029c CrossRefGoogle Scholar
  4. Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13:769–787. doi: 10.1007/s10404-012-0999-2 CrossRefGoogle Scholar
  5. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing : a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095CrossRefGoogle Scholar
  6. Chakraborty S (2007) Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Anal Chim Acta 605(2):175–184. doi: 10.1016/j.aca.2007.10.049 CrossRefGoogle Scholar
  7. Chan CPY, Mak WC, Cheung KY, Sin KK, Yu CM, Rainer TH, Renneberg R (2013) Evidence-based point-of-care diagnostics: current status and emerging technologies. Annu Rev Anal Chem (Palo Alto, CA) 6:191–211. doi: 10.1146/annurev-anchem-062012-092641 CrossRefGoogle Scholar
  8. Chen J-K, Yang R-J (2007) Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28(6):975–983. doi: 10.1002/elps.200600470 CrossRefGoogle Scholar
  9. Chen B, Kwong P, Gupta M (2013) Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices. ACS Appl Mater Interfaces 5:12701–12707CrossRefGoogle Scholar
  10. Chen C, Lin B-R, Wang H-K, Fan S-T, Hsu M-Y, Cheng C-M (2014) Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluid Nanofluid 16(5):849–856. doi: 10.1007/s10404-014-1359-1 CrossRefGoogle Scholar
  11. Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed Engl 122(28):4881–4884. doi: 10.1002/ange.201001005 CrossRefGoogle Scholar
  12. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(6):5821–5826CrossRefGoogle Scholar
  13. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233. doi: 10.1016/j.aca.2010.06.019 CrossRefGoogle Scholar
  14. Godino N, Vereshchagina E (2014) Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device. Microfluid Nanofluid 16:895–905. doi: 10.1007/s10404-013-1283-9 CrossRefGoogle Scholar
  15. Gu Z, Zhao M, Sheng Y, Bentolila LA, Tang Y (2011) Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay. Anal Chem 83:2324–2329CrossRefGoogle Scholar
  16. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515. doi: 10.1021/ac2030199 CrossRefGoogle Scholar
  17. Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1(1):116–149Google Scholar
  18. Hwang H, Kim S-H, Kim T-H, Park J-K, Cho Y-K (2011) Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 11(20):3404–3406. doi: 10.1039/c1lc20445a CrossRefGoogle Scholar
  19. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem 84:2900–2907CrossRefGoogle Scholar
  20. Kim DY, Steckl AJ (2010) Electrowetting on paper for electronic paper display. ACS Appl Mater Interfaces 2(11):3318–3323. doi: 10.1021/am100757g CrossRefGoogle Scholar
  21. Kurra N, Kulkarni GU (2013) Pencil-on-paper: electronic devices. Lab Chip 13(15):2866–2873. doi: 10.1039/c3lc50406a CrossRefGoogle Scholar
  22. Kurra N, Dutta D, Kulkarni GU (2013) Field effect transistors and RC filters from pencil-trace on paper. Phys Chem Chem Phys 15(21):8367–8372. doi: 10.1039/c3cp50675d CrossRefGoogle Scholar
  23. Lafleur L, Stevens D, McKenzie K, Ramachandran S, Spicar-Mihalic P, Singhal M, Lutz B (2012) Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards. Lab Chip 12(6):1119–1127. doi: 10.1039/c2lc20751f CrossRefGoogle Scholar
  24. Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid. doi: 10.1007/s10404-014-1340-z Google Scholar
  25. Li L, Breedveld V, Hess DW (2013) Design and fabrication of superamphiphobic paper surfaces. ACS Appl Mater Interfaces 5:5381–5386CrossRefGoogle Scholar
  26. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500. doi: 10.1002/elps.200800563 CrossRefGoogle Scholar
  27. Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82:935–941CrossRefGoogle Scholar
  28. Mace CR, Deraney RN (2013) Manufacturing prototypes for paper-based diagnostic devices. Microfluid Nanofluid 16(5):801–809. doi: 10.1007/s10404-013-1314-6 CrossRefGoogle Scholar
  29. Mandal P, Dey R, Chakraborty S (2012) Electrokinetics with “paper-and-pencil” devices. Lab Chip 12(20):4026–4028. doi: 10.1039/c2lc40681k CrossRefGoogle Scholar
  30. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46(8):1318–1320. doi: 10.1002/anie.200603817 CrossRefGoogle Scholar
  31. Martinez AW, Phillips ST, Whitesides GM (2008a) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105(50):19606–19611. doi: 10.1073/pnas.0810903105 CrossRefGoogle Scholar
  32. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008b) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150. doi: 10.1039/b811135a CrossRefGoogle Scholar
  33. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  34. Masoodi R, Pillai KM (2010) Darcy’ s law-based model for wicking in paper-like swelling porous media. Am Inst Chem Eng 56:2257–2267. doi: 10.1002/aic Google Scholar
  35. Matsuura K, Chen K-H, Tsai C-H, Li W, Asano Y, Naruse K, Cheng C-M (2014) Paper-based diagnostic devices for evaluating the quality of human sperm. Microfluid Nanofluid 16(5):857–867. doi: 10.1007/s10404-014-1378-y CrossRefGoogle Scholar
  36. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10(22):3163–3169. doi: 10.1039/c0lc00237b CrossRefGoogle Scholar
  37. Nigmatullin R, Lovitt R, Wright C, Linder M, Nakari-Setälä T, Gama M (2004) Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids Surf B Biointerfaces 35(2):125–135. doi: 10.1016/j.colsurfb.2004.02.013 CrossRefGoogle Scholar
  38. Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  39. Rattanarat P, Dungchai W, Siangproh W, Chailapakul O, Henry CS (2012) Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal Chim Acta 744:1–7. doi: 10.1016/j.aca.2012.07.003 CrossRefGoogle Scholar
  40. Rezk AR, Qi A, Friend JR, Li WH, Yeo LY (2012) Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 12(4):773–779. doi: 10.1039/c2lc21065g CrossRefGoogle Scholar
  41. Sousa MP, Mano JF (2013) Superhydrophobic paper in the development of disposable labware and lab-on-paper devices. ACS Appl Mater Interfaces 5:3731–3737CrossRefGoogle Scholar
  42. Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12(10):1768–1770. doi: 10.1039/c2lc40126f CrossRefGoogle Scholar
  43. Xu C, Cai L, Zhong M, Zheng S (2015) Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. RSC Adv 5:4770–4773CrossRefGoogle Scholar
  44. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251. doi: 10.1039/c3lc50169h CrossRefGoogle Scholar
  45. Yoon B, Shin H, Kang E, Cho DW, Shin K, Chung H (2013) Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors. ACS Appl Mater Interfaces 5:4527–4535CrossRefGoogle Scholar
  46. Zhang M, Ge L, Ge S, Yan M, Yu J, Huang J, Liu S (2013) Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens Bioelectron 41(2013):544–550. doi: 10.1016/j.bios.2012.09.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ranabir Dey
    • 1
  • Shantimoy Kar
    • 2
  • Sumit Joshi
    • 1
  • Tapas K. Maiti
    • 2
    • 3
  • Suman Chakraborty
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Advanced Technology Development CentreIndian Institute of TechnologyKharagpurIndia
  3. 3.Department of BiotechnologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations