Advertisement

Microfluidics and Nanofluidics

, Volume 19, Issue 2, pp 335–341 | Cite as

Surface acoustic wave controlled integrated band-pass filter

  • Viktor Skowronek
  • Richard W. Rambach
  • Thomas Franke
Research Paper

Abstract

We introduce a microfluidic band-pass filter for particles that is fully integrated in a polydimethylsiloxane-based microchannel device. This acoustic filter allows a continuous and label-free separation of particles. To demonstrate the functionality, mixtures of particles with different sizes are exposed to propagating surface acoustic waves generated by two laterally displaced interdigitated transducers, one on each side of the microchannel. Dependent on the frequency used, a specific size or even a size range of particles can be extracted. We sort particles of sizes of ~1–10 µm and estimate the size resolution to be smaller than ∆r < 0.88 µm. We examine the performance of the device and achieve a throughput of ~105 particles/s with an efficiency as high as 99 %.

Keywords

Band-pass filter SAW Propagating surface acoustic waves (PSAW) Sorting Microfluidics PDMS Particle separation Particle filtering 

Notes

Acknowledgments

The authors thank Achim Wixforth for support and acknowledge support by the Center for NanoScience (CeNS). V. S. and R. R. thank Lothar Schmid and Thomas Geislinger for discussions. T. F. thanks the German Research Foundation (DFG) for financial support via priority programs and research grants. R. R. and T. F. acknowledge support by the “Bayerisches Staatsministerium für Umwelt und Verbraucherschutz”.

References

  1. Adams JD, Soh HT (2010) Tunable acoustophoretic band-pass particle sorter. Appl Phys Lett 97:2–4. doi: 10.1063/1.3467259 Google Scholar
  2. Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci 105:18165–18170. doi: 10.1073/pnas.0809795105 CrossRefGoogle Scholar
  3. Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002a) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636CrossRefGoogle Scholar
  4. Auroux P-A, Iossifidis D, Reyes DR, Manz A (2002b) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652CrossRefGoogle Scholar
  5. Chen DF, Li WH, Du H, Li M (2012) Continuous sorting of microparticles using dielectrophoresis. J Nanosci Nanotechnol 12:3035–3039CrossRefGoogle Scholar
  6. Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14:4665–4672. doi: 10.1039/C4LC00868E CrossRefGoogle Scholar
  7. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. doi: 10.1039/b912547g CrossRefGoogle Scholar
  8. Franke T, Abate AR, Weitz DA, Wixforth A (2009a) Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9:2625–2627. doi: 10.1039/b906819h CrossRefGoogle Scholar
  9. Franke T, Braunmüller S, Frommelt T, Wixforth A (2009b) Sorting of solid and soft objects in vortices driven by surface acoustic waves. SPIE Eur Microtechnol New Millenn 73650O:73650O. doi: 10.1117/12.821701 CrossRefGoogle Scholar
  10. Franke T, Braunmüller S, Schmid L et al (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10:789–794. doi: 10.1039/b915522h CrossRefGoogle Scholar
  11. Geislinger TM, Eggart B, Braunmuller S, Schmid L, Franke T (2012) Separation of blood cells using hydrodynamic lift. Appl Phys Lett 4:183701CrossRefGoogle Scholar
  12. Hu X, Bessette PH, Qian J et al (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102:15757–15761. doi: 10.1073/pnas.0507719102 CrossRefGoogle Scholar
  13. Kim U, Soh HT (2009) Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic-magnetic activated cell sorter. Lab Chip 9:2313–2318. doi: 10.1039/b903950c CrossRefGoogle Scholar
  14. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39:1203–1217. doi: 10.1039/b915999c CrossRefGoogle Scholar
  15. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210–1223. doi: 10.1039/c2lc21256k CrossRefGoogle Scholar
  16. Lewpiriyawong N, Yang C, Lam YC (2010) Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–2631. doi: 10.1002/elps.201000087 CrossRefGoogle Scholar
  17. Li S, Ding X, Guo F et al (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 85:5468–5474. doi: 10.1021/ac400548d CrossRefGoogle Scholar
  18. Marchington RF, Mazilu M, Kuriakose S et al (2008) Optical deflection and sorting of microparticles in a near-field optical geometry. Opt Express 16:3712–3726CrossRefGoogle Scholar
  19. McCloskey KE, Chalmers JJ, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75:6868–6874. doi: 10.1021/ac034315j CrossRefGoogle Scholar
  20. Nam J, Lim H, Kim D, Shin S (2011) Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip 11:3361–3364. doi: 10.1039/c1lc20346k CrossRefGoogle Scholar
  21. Nieuwenhuis JH, Jachimowicz A, Svasek P, Vellekoop MJ (2004) High-speed integrated particle sorters based on dielectrophoresis. Proc IEEE Sens 2004:64–67. doi: 10.1109/ICSENS.2004.1426100 Google Scholar
  22. Petersson F, Aberg L, Swärd-Nilsson A-M, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123. doi: 10.1021/ac070444e CrossRefGoogle Scholar
  23. Rambach RW, Skowronek V, Franke T (2014) Localization and shaping of surface acoustic waves using PDMS posts: application for particle filtering and washing. RSC Adv 4:60534–60542. doi: 10.1039/C4RA13002B CrossRefGoogle Scholar
  24. Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:3710–3718. doi: 10.1039/C4LC00588K CrossRefGoogle Scholar
  25. Shi J, Mao X, Ahmed D et al (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223. doi: 10.1039/b716321e CrossRefGoogle Scholar
  26. Shi J, Huang H, Stratton Z et al (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359. doi: 10.1039/b915113c CrossRefGoogle Scholar
  27. Skowronek V, Rambach RW, Schmid L et al (2013) Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Anal Chem 85:9955–9959. doi: 10.1021/ac402607p CrossRefGoogle Scholar
  28. Van den Engh G (2002) High-Speed Cell Sorting. Emerg. Tools Single-Cell Anal. Wiley, New Jersey, pp 21–48Google Scholar
  29. Wang X, Zhou J, Papautsky I (2013) Inertial Microfluidic Band-Pass Separations, pp 575–577Google Scholar
  30. Wiklund M, Günther C, Lemor R et al (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6:1537–1544. doi: 10.1039/b612064b CrossRefGoogle Scholar
  31. Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluidics 9:1–16. doi: 10.1007/s10404-010-0602-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Viktor Skowronek
    • 1
  • Richard W. Rambach
    • 1
  • Thomas Franke
    • 1
    • 2
  1. 1.Experimentalphysik I, Soft Matter GroupUniversity of AugsburgAugsburgGermany
  2. 2.School of Engineering, Chair of Biomedical EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations