Advertisement

Microfluidics and Nanofluidics

, Volume 19, Issue 1, pp 67–74 | Cite as

Rotary polymer micromachines: in situ fabrication of microgear components in microchannels

  • Byeong-Ui Moon
  • Scott S. H. Tsai
  • Dae Kun HwangEmail author
Research Paper

Abstract

This paper presents in situ fabrication of polymeric machine elements operated by hydrodynamic forcing. With a single-step production, rotary polymer microgears are installed in microfluidic channels via UV-induced polymerization. First, a single microgear is formed, and its rotational performance is characterized as a function of the flow rate of a polymer solution. Then, the rotation of multiple microgears in a single microchannel is demonstrated, where all of the gears are driven by a single fluid flow stream. Finally, paired microgears are fabricated, and the gears show the ability to transmit torque. This ability may be integrated to build polymer microelectromechanical systems that are useful for biomedical applications.

Keywords

In situ polymerizaiton Stop-flow lithography MEMS Microgear 

Notes

Acknowledgments

D.K. Hwang (Grant No. 386092-2010) and S.S.H. Tsai (Grant No. 435514-2013) both acknowledge funding support from Canada’s Natural Sciences and Engineering Research Council (NSERC) Discovery grants program.

Supplementary material

10404_2015_1548_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1151 kb)

Supplementary material 2 (MPG 96 kb)

10404_2015_1548_MOESM3_ESM.mpg (610 kb)
Supplementary material 3 (MPG 610 kb)
10404_2015_1548_MOESM4_ESM.mpg (132 kb)
Supplementary material 4 (MPG 132 kb)
10404_2015_1548_MOESM5_ESM.mpg (264 kb)
Supplementary material 5 (MPG 264 kb)

References

  1. Ahn CH, Allen MG (1995) Fluid micropumps based on rotary magnetic actuators. Proc IEEE MEMS 1995:408–412Google Scholar
  2. Attia R, Pregibon DC, Doyle PS, Viovy J-L, Bartolo D (2007) Soft microflow sensors. Proc MicroTAS 2007:1146–1148Google Scholar
  3. Attia R, Pregibon DC, Doyle PS, Viovy J-L, Bartolo D (2009) Soft microflow sensors. Lab Chip 9(9):1213–1218CrossRefGoogle Scholar
  4. Bustillo JM, Howe RT, Muller RS (1998) Surface micromachining for microelectromechanical systems. Proc IEEE 86(8):1552–1574CrossRefGoogle Scholar
  5. Chang WC, Sretavan DW (2007) Microtechnology in medicine: the emergence of surgical microdevices. Clin Neurosurg 54:137–147Google Scholar
  6. Chung SE, Kim J, Choi S-E, Kim LN, Kwon S (2011) In situ fabrication and actuation of polymer magnetic microstructures. J Microelectromech Syst 20(4):785–787CrossRefGoogle Scholar
  7. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5(5):365–369CrossRefGoogle Scholar
  8. Dendukuri D, Gu SS, Pregibon DC, Hatton TA, Doyle PS (2007) Stop-flow lithography in a microfluidic device. Lab Chip 7(7):818–828CrossRefGoogle Scholar
  9. Dendukuri D, Panda P, Haghgooie R, Kim JM, Hatton TA, Doyle PS (2008) Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules 41(22):8547–8556CrossRefGoogle Scholar
  10. Garcia EJ, Sniegowski JJ (1995) Surface micromachined microengine. Sens Actuators A 48(3):203–214CrossRefGoogle Scholar
  11. Ghalichechian N, Modafe A, Beyaz MI, Ghodssi R (2008) Design, fabrication, and characterization of a rotary micromotor supported on microball bearings. J Microelectromech Syst 17(3):632–642CrossRefGoogle Scholar
  12. Grayson ACR, Shawgo RS, Johnson AM, Flynn NT, Yawen LI, Cima MJ, Langer R (2004) A BioMEMS review: MEMS technology for physiologically integrated devices. Proc IEEE 92(1):6–21CrossRefGoogle Scholar
  13. Hiratsuka Y, Miyata M, Tada T, Uyeda TQP (2006) A microrotary motor powered by bacteria. Proc Natl Acad Sci 103(37):13618–13623CrossRefGoogle Scholar
  14. Ho C-M, Tai Y-C (1998) Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu Rev Fluid Mech 30(1):579–612CrossRefGoogle Scholar
  15. Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647CrossRefGoogle Scholar
  16. Li M, Humayun M, Kozinski JA, Hwang DK (2014) Functional polymer sheet patterning using microfluidics. Langmuir 30(28):8637–8644CrossRefGoogle Scholar
  17. Moon B-U, Lee J-M, Shim C-H, Lee M-B, Lee J-H, Lee D-D, Lee J-H (2005) Silicon bridge type micro-gas sensor array. Sens Actuators B 108(2):271–277CrossRefGoogle Scholar
  18. Neale SL, MacDonald MP, Dholakia K, Krauss TF (2005) All-optical control of microfluidic components using form birefringence. Nat Mater 4(7):530–533CrossRefGoogle Scholar
  19. Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8(7):1056–1061CrossRefGoogle Scholar
  20. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502CrossRefGoogle Scholar
  21. Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4(6):608–613CrossRefGoogle Scholar
  22. Shepherd RF, Panda P, Bao Z, Sandhage KH, Hatton TA, Lewis JA, Doyle PS (2008) Stop-flow lithography of colloidal, glass, and silicon microcomponents. Adv Mater 20(24):4734–4739CrossRefGoogle Scholar
  23. Stark KC, Azzam Yasseen A, Phillips SM, Mehregany M (2002) Micro torque measurement using outer-rotor polysilicon micromotors. Sens Proc IEEE 2002:1751–1756Google Scholar
  24. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices. Annu Rev Fluid Mech 36(1):381–411CrossRefGoogle Scholar
  25. White FM (2003) Fluid mechanics, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  26. Wu Z, Frederic KJ, Talarico M, De Kee D (2009) Porous polymer monolith templated by small polymer molecules. Can J Chem Eng 87(4):579–583CrossRefGoogle Scholar
  27. Yue T, Nakajima M, Takeuchi M, Fukuda T (2014) Improved laser manipulation for on-chip fabricated microstructures based on solution replacement and its application in single cell analysis. Int J Adv Robot Syst 11:1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Byeong-Ui Moon
    • 1
  • Scott S. H. Tsai
    • 1
  • Dae Kun Hwang
    • 2
    Email author
  1. 1.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada
  2. 2.Department of Chemical EngineeringRyerson UniversityTorontoCanada

Personalised recommendations