Microfluidics and Nanofluidics

, Volume 19, Issue 1, pp 53–65 | Cite as

Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles

  • Elodie Sollier
  • Hamed Amini
  • Derek E. Go
  • Patrick A. Sandoz
  • Keegan Owsley
  • Dino Di Carlo
Research Paper


Control of particles/cells and the surrounding fluid is enabling toward the purification of complex cellular samples, which still remains a bottleneck for point-of-care diagnostic devices. We explore a newly developed approach to engineer fluid stream motion while simultaneously controlling particles using inertial lift force. We use inertial flow deformations induced by sequences of simple pillar microstructures to control the fluid stream. Instead of iterative experimental procedures to identify optimal sequences of structures, we use software that numerically predicts the total deformation function for any pillar sequence. Using this program, we engineer the cross-stream translation of a fluid stream to achieve solution exchange around particles, where both the particles and fluid stream remain focused and can be extracted at high purity. An extraction device, called a pillar separation device, is then designed and validated with suspensions of rigid particles to identify optimal operating parameters. At a flow rate of 250 µL/min, up to 96 % beads and 70.5 % of an initial buffer stream inputted into the system can be collected downstream in separate outlets, respectively, with 10.9 % buffer and 0.3 % bead contamination. This device was further applied to a functionalized bead bioassay, achieving high-yield and continuous separation of 98 % of biotin-coated beads from 72.2 % of extra FITC-biotin. In a last study, we performed the extraction of 80 % of leukocytes from lysed blood, which validates our platform can be applied on living cells and used for various functions of cellular sample preparation.


Inertial microfluidics Pillar programming Particle fluid separation Solution exchange Sample preparation 



This work is partially supported by NSF Grant #1307550. The authors would like to thank Dr. Oladunni Adeyiga for blood collection and all our volunteers for blood donation, Dr. Eric Tsang for his helpful advice with the Tecan Plate Reader, Dr. Ricky Chiu for his instructions on the Life Science UV/Vis spectrophotometer, Dr. M. Schibler and the California NanoSystems Institute Advanced Light Microscopy Core Facility for their assistance with the confocal studies.

Supplementary material

10404_2015_1547_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1159 kb)


  1. Akter F, Mie M, Kobatake E (2014) DNA-based immunoassays for sensitive detection of protein. Sens Actuators B: Chem 202:1248–1256CrossRefGoogle Scholar
  2. Amini H, Sollier E, Weaver WM, Di Carlo D (2012) Intrinsic particle-induced lateral transport in microchannels. PNAS 109(29):11593–11598CrossRefGoogle Scholar
  3. Amini H, Sollier E, Masaeli M, Xie Y, Ganapathysubramanian B, Stone HA, Di Carlo D (2013) Engineering fluid flow using sequenced microstructures. Nat Commun 4:1826CrossRefGoogle Scholar
  4. Amini H, Lee W, Di Carlo D (2014) Inertial microfluidics physics. Lab Chip 14:2739–2761CrossRefGoogle Scholar
  5. Augustsson P, Aberg LB, Sward-Nilsson A-MK, Laurell T (2009) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Microchim Acta 164:269–277CrossRefGoogle Scholar
  6. Chen J, Chen D, Yuan T, Xie Y, Chen X (2013) A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Biomicrofluidics 7:034106CrossRefGoogle Scholar
  7. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134CrossRefGoogle Scholar
  8. Chung AJ, Pulido D, Oka JC, Masaeli M, Amini H, Di Carlo D (2013) Microstructure induced local helical vortices allow single-stream and long-term inertial focusing. Lab Chip 13:2942–2949CrossRefGoogle Scholar
  9. Cripps CM (1968) Rapid method for the estimation of plasma haemoglobin levels. J Clin Pathol 21(1):110–112CrossRefGoogle Scholar
  10. Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. PNAS 103(40):14779–14784CrossRefGoogle Scholar
  11. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046CrossRefGoogle Scholar
  12. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering and separation of particles in microchannels. PNAS 104:18892–18897CrossRefGoogle Scholar
  13. Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211CrossRefGoogle Scholar
  14. Di Carlo D, Edd JF, Humphry KJ, Stone H, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102:094503CrossRefGoogle Scholar
  15. Dudani JS, Gossett DR, Tan AP, Di Carlo D (2014) Mediating millisecond reaction time around particles and cells. Anal Chem. doi: 10.1021/ac402920m Google Scholar
  16. Gossett DR, Tse HTK, Dudani JS, Goda K, Woods TA, Graves SW, Di Carlo D (2012) Inertial manipulation and transfer of microparticles across laminar fluid streams. Small 8:2757–2764CrossRefGoogle Scholar
  17. Hur SC, Henderson-MacLennan NK, McCabe ERB, Di Carlo D (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–920CrossRefGoogle Scholar
  18. Lee H, Park JE, Nam JM (2014) Bio-barcode gel assay for micro RNA. Nat Commun 5:3367Google Scholar
  19. Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11:2827–2834CrossRefGoogle Scholar
  20. Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Di Carlo D (2012) Continuous inertial focusing and separation of particles by shape. Phys Rev X 2:031017Google Scholar
  21. Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched flow fractionation for size and density based particle sorting in microchannels. Microfluid Nanofluid 11(1):105–110CrossRefGoogle Scholar
  22. Nunes JK, Wu C, Amini H, Owsley K, Di Carlo D, Stone HA (2014) Fabricating shaped microfibers with inertial microfluidics. Adv Mater 26(22):3712–3717CrossRefGoogle Scholar
  23. Pullaguria SR, Witek MA, Jackson JM, Lindell MAM, Hupert ML, Nesterova IV, Baird AE, Soper SA (2014) Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis. Anal Chem 86(8):4058–4065CrossRefGoogle Scholar
  24. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599CrossRefGoogle Scholar
  25. Shi W, Guo L, Kasdan H, Tai YC (2013) Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay. Lab Chip 13:1257–1265CrossRefGoogle Scholar
  26. Sollier E, Cubizolles M, Fouillet Y, Achard JL (2010) Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomed Microdevices 12(3):485–497CrossRefGoogle Scholar
  27. Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11:3752–3765CrossRefGoogle Scholar
  28. Sollier E, Go D, Che J, Gossett DR, O’Byrne S, Weaver WM, Kummer N, Rettig M, Goldman J, Nickols N, McCloskey S, Kulkarni R, Di Carlo D (2014) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:63–77CrossRefGoogle Scholar
  29. Spencer D, Elliott G, Morgan H (2014) A sheath-less combined optical and impedance micro-cytometer. Lab Chip 14:3064–3073CrossRefGoogle Scholar
  30. Stoeklein D, Wu CY, Owsley K, Xie Y, Di Carlo D, Ganapathysubramanian B (2014) Micropillar sequence designs for fundamental inertial flow transformations. Lab Chip. doi: 10.1039/C4LC00653D Google Scholar
  31. Watkins NN, Hassan U, Damhorst G, Ni H, Vaid A, Rodriguez W, Bashir R (2013) Microfluidic CD4 + and CD8 + T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci Transl Med 5:214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elodie Sollier
    • 1
    • 2
  • Hamed Amini
    • 1
    • 3
  • Derek E. Go
    • 1
    • 3
  • Patrick A. Sandoz
    • 1
    • 4
  • Keegan Owsley
    • 1
    • 3
  • Dino Di Carlo
    • 1
    • 3
    • 5
  1. 1.Department of BioengineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Vortex Biosciences Inc.Menlo ParkUSA
  3. 3.California NanoSystems InstituteLos AngelesUSA
  4. 4.School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  5. 5.UCLA Jonsson Comprehensive Cancer CenterLos AngelesUSA

Personalised recommendations