Advertisement

Microfluidics and Nanofluidics

, Volume 19, Issue 1, pp 9–18 | Cite as

Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips

  • Ho Nam Chan
  • Yangfan Chen
  • Yiwei Shu
  • Yin Chen
  • Qian Tian
  • Hongkai WuEmail author
Research Paper

Abstract

In this work, we developed a convenient, one-step soft-lithographic-based molding technique for molding truly 3D microfluidic channels in polydimethylsiloxane (PDMS) by overcoming two grand challenges. We optimized the post-treatment conditions for 3D-printed resin structures to facilitate the use of them as masters for PDMS replica molding. What is more important, we demonstrated a novel method for single-step molding from 3D-printed microstructures to generate truly 3D microfluidic networks easily. With this technique, we fabricated some key, functional 3D microfluidic structures and components including a basket-weaving network, a 3D chaotic advective mixer and microfluidic peristaltic valves. Furthermore, an interesting “injection-on-demand” microfluidic device was also demonstrated. Our technique offers a simple, fast route to the fabrication of 3D microfluidic chips in a short time without clean-room facilities.

Keywords

3D printing Soft lithography One-step molding 3D microfluidic chip PDMS 

Notes

Acknowledgments

The authors are grateful for the funding provided by Hong Kong Research Grants Council (#605210, #604712 and CUHK4/CRF/12G).

Supplementary material

10404_2014_1542_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1271 kb)

Supplementary material 2 (MPG 24392 kb)

Supplementary material 3 (MPG 3296 kb)

Supplementary material 4 (MPG 1366 kb)

References

  1. Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164CrossRefGoogle Scholar
  2. Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85:5622–5626. doi: 10.1021/ac4009594 CrossRefGoogle Scholar
  3. Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14:1294–1301. doi: 10.1039/c3lc51360b CrossRefGoogle Scholar
  4. Cannon DM, Kuo T, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230. doi: 10.1021/ac020629f CrossRefGoogle Scholar
  5. Chen H, Meiners J-C (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84:2193–2195. doi: 10.1063/1.1686895 CrossRefGoogle Scholar
  6. Chen C, Wang Y, Lockwood SY, Spence DM (2014) 3D-printed fluidic devices enable quantitative evaluation of blood components in modified storage solutions for use in transfusion medicine. Analyst 139:3219–3226. doi: 10.1039/c3an02357e CrossRefGoogle Scholar
  7. Chiu DT, Jeon NL, Huang S et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci USA 97:2408–2413. doi: 10.1073/pnas.040562297 CrossRefGoogle Scholar
  8. Comina G, Suska A, Filippini D (2014) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–430. doi: 10.1039/c3lc50956g CrossRefGoogle Scholar
  9. Conlisk K, O’Connor GM (2012) Analysis of passive microfluidic mixers incorporating 2D and 3D baffle geometries fabricated using an excimer laser. Microfluid Nanofluidics 12:941–951. doi: 10.1007/s10404-011-0928-9 CrossRefGoogle Scholar
  10. Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:067001. doi: 10.1088/0960-1317/18/6/067001 CrossRefGoogle Scholar
  11. Erkal JL, Selimovic A, Gross BC et al (2014) 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip. doi: 10.1039/c4lc00171k Google Scholar
  12. Esser-Kahn AP, Thakre PR, Dong H et al (2011) Three-dimensional microvascular fiber-reinforced composites. Adv Mater 23:3654–3658. doi: 10.1002/adma.201100933 CrossRefGoogle Scholar
  13. Femmer T, Kuehne AJC, Wessling M (2014) Print your own membrane: direct rapid prototyping of polydimethylsiloxane. Lab Chip 14:2610–2613. doi: 10.1039/c4lc00320a CrossRefGoogle Scholar
  14. Fu AY, Chou H-P, Spence C et al (2002) An integrated microfabricated cell sorter. Anal Chem 74:2451–2457. doi: 10.1021/ac0255330 CrossRefGoogle Scholar
  15. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536. doi: 10.1073/pnas.262485199 CrossRefGoogle Scholar
  16. Hong JW, Studer V, Hang G et al (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435–439. doi: 10.1038/nbt951 CrossRefGoogle Scholar
  17. Huang B, Wu H, Bhaya D et al (2007) Counting low-copy number proteins in a single cell. Science 315:81–84. doi: 10.1126/science.1133992 CrossRefGoogle Scholar
  18. Jo B-H, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Microelectromech Syst J 9:76–81. doi: 10.1109/84.825780 CrossRefGoogle Scholar
  19. Kartalov EP, Quake SR (2004) Microfluidic device reads up to four consecutive base pairs in DNA sequencing-by-synthesis. Nucleic Acids Res 32:2873–2879. doi: 10.1093/nar/gkh613 CrossRefGoogle Scholar
  20. Kartalov E, Zhong J, Scherer A et al (2006) High-throughput multi-antigen microfluidic fluorescence immunoassays. Biotechniques 40:85–90. doi: 10.2144/000112071 CrossRefGoogle Scholar
  21. Kitson PJ, Rosnes MH, Sans V et al (2012) Configurable 3D-Printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab Chip 12:3267–3271. doi: 10.1039/c2lc40761b CrossRefGoogle Scholar
  22. Kitson PJ, Marshall RJ, Long D et al (2014) 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew Chem Int Ed Engl 12723–12728. doi: 10.1002/anie.201402654
  23. LaFratta CN, Li L, Fourkas JT (2006) Soft-lithographic replication of 3D microstructures with closed loops. Proc Natl Acad Sci USA 103:8589–8594. doi: 10.1073/pnas.0603247103 CrossRefGoogle Scholar
  24. Lee J, Paek J, Kim J (2012) Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices. Lab Chip 12:2638–2642. doi: 10.1039/c2lc40267j CrossRefGoogle Scholar
  25. Lee W, Kwon D, Chung B et al (2014) Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal Chem 86:6683–6688. doi: 10.1021/ac501436d CrossRefGoogle Scholar
  26. Liu RH, Stremler MA, Sharp KV et al (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197. doi: 10.1109/84.846699 CrossRefGoogle Scholar
  27. Liu J, Hansen C, Quake SR (2003) Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal Chem 75:4718–4723CrossRefGoogle Scholar
  28. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105:19606–19611. doi: 10.1073/pnas.0810903105 CrossRefGoogle Scholar
  29. Mosadegh B, Kuo C-H, Tung Y-C et al (2010) Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices. Nat Phys 6:433–437. doi: 10.1038/nphys1637 CrossRefGoogle Scholar
  30. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406. doi: 10.1021/ar300314s CrossRefGoogle Scholar
  31. Shallan AI, Smejkal P, Corban M et al (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86:3124–3130. doi: 10.1021/ac4041857 CrossRefGoogle Scholar
  32. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271. doi: 10.1038/nmat863 CrossRefGoogle Scholar
  33. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584. doi: 10.1126/science.1076996 CrossRefGoogle Scholar
  34. Unger MA, Chou H-P, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116. doi: 10.1126/science.288.5463.113 CrossRefGoogle Scholar
  35. Verma MKS, Majumder A, Ghatak A (2006) Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:10291–10295. doi: 10.1021/la062516n CrossRefGoogle Scholar
  36. Vijayendran RA, Motsegood KM, Beebe DJ, Leckband DE (2002) Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824–1828. doi: 10.1021/la0262250 CrossRefGoogle Scholar
  37. Wheeler AR, Throndset WR, Whelan RJ et al (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581–3586CrossRefGoogle Scholar
  38. Wu H, Brittain S, Anderson J et al (2000) Fabrication of topologically complex three-dimensional microstructures: metallic microknots. J Am Chem Soc 122(51):12691–12699CrossRefGoogle Scholar
  39. Wu H, Odom TW, Chiu DT, Whitesides GM (2003) Fabrication of complex three-dimensional microchannel systems in PDMS. J Am Chem Soc 125:554–559. doi: 10.1021/ja021045y CrossRefGoogle Scholar
  40. Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci USA 101:12809–12813. doi: 10.1073/pnas.0405299101 CrossRefGoogle Scholar
  41. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183. doi: 10.1002/adma.201004625 CrossRefGoogle Scholar
  42. Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers. Lab Chip 5:748–755. doi: 10.1039/b502031j CrossRefGoogle Scholar
  43. Xiong B, Ren K, Shu Y et al (2014) Recent developments in microfluidics for cell studies. Adv Mater 26:5525–5532. doi: 10.1002/adma.201305348 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ho Nam Chan
    • 1
  • Yangfan Chen
    • 1
  • Yiwei Shu
    • 1
  • Yin Chen
    • 1
  • Qian Tian
    • 1
  • Hongkai Wu
    • 1
    Email author
  1. 1.Department of ChemistryHong Kong University of Science and TechnologyClear Water Bay, KowloonChina

Personalised recommendations