Advertisement

Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 1425–1431 | Cite as

Programmable microfluidic platform for spatiotemporal control over nanoliter droplets

  • Raviraj Thakur
  • Yuxing Zhang
  • Ahmed Amin
  • Steve WereleyEmail author
Short Communication

Abstract

Droplet microfluidics offers an effective way for compartmentalizing samples and reagents for various biological and/or biochemical assays. However, an active control over size and frequency of individual droplets is quite difficult to achieve with off-chip pumping mechanisms such as syringe pumps. In this article, we propose the use of programmable microfluidic architectural components for spatiotemporal droplet control. On-chip three-valve diaphragm pumps were used to drive both dispersed and carrier phases toward a microfluidic T-junction. Individual droplet sizes and spacings were varied by controlling the number of pump cycles for injection and break-off. Droplet generation frequency was modulated by adjusting valve actuation rate. Droplet sizes were quantified for various pump parameters to identify the parametric space for stable and reliable droplet generation. Complex droplet trains with variable drop sizes and spacing were created by programming the desired pump states. Combinatorial merging and mixing of two droplets in various volumetric ratios was performed in a divergent mixing geometry to demonstrate utility of this technology.

Keywords

On-demand droplet generation Combinatorial mixing Programmable microfluidics 

Supplementary material

10404_2014_1507_MOESM1_ESM.pdf (382 kb)
Supplementary material 1 (PDF 382 kb)

Supplementary material 2 (WMV 8383 kb)

Supplementary material 3 (WMV 19279 kb)

Supplementary material 4 (WMV 39730 kb)

Supplementary material 5 (WMV 46236 kb)

References

  1. Amin AM, Thakur R, Madren S et al (2013) Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid Nanofluid. doi: 10.1007/s10404-013-1180-2 Google Scholar
  2. Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7:1029–1033. doi: 10.1039/b702472j CrossRefGoogle Scholar
  3. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10:2032–2045. doi: 10.1039/c001191f CrossRefGoogle Scholar
  4. Brouzes E, Medkova M, Savenelli N et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195–14200. doi: 10.1073/pnas.0903542106 CrossRefGoogle Scholar
  5. Cecchini MP, Hong J, Lim C et al (2011) Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems. Anal Chem 83:3076–3081CrossRefGoogle Scholar
  6. Christopher GF, Noharuddin NN, Taylor JA, Anna SL (2008) Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys Rev E 78:036317. doi: 10.1103/PhysRevE.78.036317 CrossRefGoogle Scholar
  7. Churski K, Nowacki M, Korczyk PM, Garstecki P (2013) Simple modular systems for generation of droplets on demand. Lab Chip 13:3689–3697. doi: 10.1039/c3lc50340b CrossRefGoogle Scholar
  8. Cristobal G, Arbouet L, Sarrazin F et al (2006) On-line laser Raman spectroscopic probing of droplets engineered in microfluidic devices. Lab Chip 6:1140–1146. doi: 10.1039/b602702d CrossRefGoogle Scholar
  9. Fradet E, McDougall C, Abbyad P et al (2011) Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays. Lab Chip 11:4228–4234. doi: 10.1039/c1lc20541b CrossRefGoogle Scholar
  10. Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9:1344–1348. doi: 10.1039/b816049j CrossRefGoogle Scholar
  11. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446. doi: 10.1039/b510841a CrossRefGoogle Scholar
  12. Grover W (2003) Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens Actuators B Chem 89:315–323. doi: 10.1016/S0925-4005(02)00468-9 CrossRefGoogle Scholar
  13. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155. doi: 10.1039/c2lc21147e CrossRefGoogle Scholar
  14. Hu W, Ohta AT (2011) Aqueous droplet manipulation by optically induced Marangoni circulation. Microfluid Nanofluid 11:307–316. doi: 10.1007/s10404-011-0797-2 CrossRefGoogle Scholar
  15. Huebner A, Bratton D, Whyte G et al (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698. doi: 10.1039/b813709a CrossRefGoogle Scholar
  16. Korczyk PM, Derzsi L, Jakieła S, Garstecki P (2013) Microfluidic traps for hard-wired operations on droplets. Lab Chip 13:4096–4102. doi: 10.1039/c3lc50347j CrossRefGoogle Scholar
  17. Lim J, Gruner P, Konrad M, Baret J-C (2013) Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13:1472–1475. doi: 10.1039/c3lc41329b CrossRefGoogle Scholar
  18. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809. doi: 10.1063/1.1785844 CrossRefGoogle Scholar
  19. Schmitz CHJ, Rowat AC, Köster S, Weitz DA (2009) Dropspots: a picoliter array in a microfluidic device. Lab Chip 9:44–49. doi: 10.1039/b809670h CrossRefGoogle Scholar
  20. Shen F, Du W, Kreutz JE et al (2010) Digital PCR on a SlipChip. Lab Chip 10:2666–2672. doi: 10.1039/c004521g CrossRefGoogle Scholar
  21. Sjostrom SL, Joensson HN, Svahn HA (2013) Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Lab Chip 13:1754–1761. doi: 10.1039/c3lc41398e CrossRefGoogle Scholar
  22. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619. doi: 10.1021/ja0354566 CrossRefGoogle Scholar
  23. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45:7336–7356. doi: 10.1002/anie.200601554 CrossRefGoogle Scholar
  24. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. doi: 10.1039/b715524g CrossRefGoogle Scholar
  25. Zeng S, Li B, Su X et al (2009) Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9:1340–1343. doi: 10.1039/b821803j CrossRefGoogle Scholar
  26. Zeng Y, Shin M, Wang T (2013) Programmable active droplet generation enabled by integrated pneumatic micropumps. Lab Chip 13:267–273. doi: 10.1039/c2lc40906b CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Raviraj Thakur
    • 1
  • Yuxing Zhang
    • 1
  • Ahmed Amin
    • 2
  • Steve Wereley
    • 1
    Email author
  1. 1.Birck Nanotechnology Center, School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Microfluidic InnovationsWest LafayetteUSA

Personalised recommendations