Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 1067–1073 | Cite as

A self-powered microfluidic monodispersed droplet generator with capability of multi-sample introduction

  • Chunyu Li
  • Jian Xu
  • Bo MaEmail author
Research Paper


We presented a simple, self-powered microfluidic droplet generator capable of generating monodispersed droplets and performing multi-sample introduction. The sealed air-evacuated PDMS channels/chambers provide an internal pumping source, eliminating the needs of external bulky and expensive pumping equipments, and simplifying manual operations. Droplets produced by this droplet generator exhibited a narrow size distribution with a coefficient of variation below 3 %. The droplet size can be controlled in a flexible way by adjusting the hydraulic resistance of the channel networks or the hydrostatic pressure exerted on the inlets. Utilizing this droplet generator, multi-sample introduction was realized by demand-controlled run/stop of the droplet generation or by sequential addition of the different samples during the continuous droplet generation. This self-powered, portable, and easy-to-use droplet generator would extend the droplet-based applications into in-field analysis and facilitate exploitation of droplet microfluidics by non-technical users.


Air-evacuated PDMS Droplet generation Multi-sample introduction Microfluidics 



This work was supported by Basic Research in Scientific Instrument Program from National Natural Science Foundation of China (No. 31327001), Scientific Instrument Development Program from the Chinese Academy of Sciences (No. YZ201236), and Key Deployment Grant on Modern Agriculture from the Chinese Academy of Sciences (No. KSZD-EW-Z-021-1-5).

Supplementary material

10404_2014_1497_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1,772 kb)

Supplementary material 2 (AVI 8,806 kb)

Supplementary material 3 (AVI 12,914 kb)

Supplementary material 4 (AVI 7,224 kb)


  1. Abate AR, Weitz DA (2011) Syringe-vacuum microfluidics: a portable technique to create monodisperse emulsions. Biomicrofluidics 5:014107. doi: 10.1063/1.3567093 CrossRefGoogle Scholar
  2. Adamson DN, Mustafi D, Zhang JXJ, Zheng B, Ismagilov RF (2006) Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6:1178–1186. doi: 10.1039/b604993a CrossRefGoogle Scholar
  3. Agresti JJ et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004–4009. doi: 10.1073/pnas.0910781107 CrossRefGoogle Scholar
  4. Ahn K, Agresti J, Chong H, Marquez M, Weitz DA (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88:264105. doi: 10.1063/1.2218058 CrossRefGoogle Scholar
  5. Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12:422–433. doi: 10.1039/c1lc20582j CrossRefGoogle Scholar
  6. Beer NR et al (2008) On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 80:1854–1858. doi: 10.1021/ac800048k CrossRefGoogle Scholar
  7. Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195–14200. doi: 10.1073/pnas.0903542106 CrossRefGoogle Scholar
  8. Bui M-PN, Li CA, Han KN, Choo J, Lee EK, Seong GH (2011) Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient. Anal Chem 83:1603–1608. doi: 10.1021/ac102472a CrossRefGoogle Scholar
  9. Cao Z et al (2013) Droplet sorting based on the number of encapsulated particles using a solenoid valve. Lab Chip 13:171–178. doi: 10.1039/c2lc40950j CrossRefGoogle Scholar
  10. Clausell-Tormos J et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437. doi: 10.1016/j.chembiol.2008.04.004 CrossRefGoogle Scholar
  11. Diguet A, Li H, Queyriaux N, Chen Y, Baigl D (2011) Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation. Lab Chip 11:2666–2669. doi: 10.1039/c1lc20328b CrossRefGoogle Scholar
  12. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  13. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446. doi: 10.1039/b510841a CrossRefGoogle Scholar
  14. Golberg A, Yarmush ML, Konry T (2013) Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus. Microchim Acta 180:855–860. doi: 10.1007/s00604-013-0998-3 CrossRefGoogle Scholar
  15. He MY, Kuo JS, Chiu DT (2005) Electro-generation of single femtoliter- and picoliter-volume aqueous droplets in microfluidic systems. Appl Phys Lett 87:031916. doi: 10.1063/1.1997280 CrossRefGoogle Scholar
  16. Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly (dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 4:181–185. doi: 10.1039/b403930k CrossRefGoogle Scholar
  17. Hosokawa K, Omata M, Sato K, Maeda M (2006) Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6:236–241. doi: 10.1039/b513424b CrossRefGoogle Scholar
  18. Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698. doi: 10.1039/b813709a CrossRefGoogle Scholar
  19. Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci USA 103:19243–19248. doi: 10.1073/pnas.0607502103 CrossRefGoogle Scholar
  20. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503. doi: 10.1103/PhysRevLett.92.054503 CrossRefGoogle Scholar
  21. Link DR et al (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556–2560. doi: 10.1002/anie.200503540 CrossRefGoogle Scholar
  22. Mazutis L, Baret J-C, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one-to-one droplet fusion. Lab Chip 9:2665–2672. doi: 10.1039/b903608c CrossRefGoogle Scholar
  23. Park S-Y, Wu T-H, Chen Y, Teitell MA, Chiou P-Y (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11:1010–1012. doi: 10.1039/c0lc00555j CrossRefGoogle Scholar
  24. Shi WW, Qin JH, Ye NN, Lin BC (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–1435. doi: 10.1039/b808753a CrossRefGoogle Scholar
  25. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619. doi: 10.1021/ja0354566 CrossRefGoogle Scholar
  26. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microflulidic channels. Angew Chem Int Ed 45:7336–7356. doi: 10.1002/anie.200601554 CrossRefGoogle Scholar
  27. Sun M, Fang Q (2010) High-throughput sample introduction for droplet-based screening with an on-chip integrated sampling probe and slotted-vial array. Lab Chip 10:2864–2868. doi: 10.1039/c005290f CrossRefGoogle Scholar
  28. Xu L, Lee H, Panchapakesan R, Oh KW (2012) Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab Chip 12:3936–3942. doi: 10.1039/c2lc40456g CrossRefGoogle Scholar
  29. Zeng S, Li B, Su Xo, Qin J, Lin B (2009) Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9:1340–1343. doi: 10.1039/b821803j CrossRefGoogle Scholar
  30. Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA (2010) High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem 82:3183–3190. doi: 10.1021/ac902683t CrossRefGoogle Scholar
  31. Zhang K et al (2010) A gravity-actuated technique for flexible and portable microfluidic droplet manipulation. Microfluid Nanofluid 9:995–1001. doi: 10.1007/s10404-010-0611-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina

Personalised recommendations