Multifunctional wax valves for liquid handling and incubation on a microfluidic CD

  • 641 Accesses

  • 15 Citations


Recently, several biological assays have become available on the centrifugal microfluidic platform. Despite many innovative solutions developed for on-disc fluid handling for these assays, certain challenges, including liquid incubation and simplification of a multi-step assay on a plastic device, still need to be further addressed. Incubating fluids that require downstream processing, which we call “midstream incubation”, can often be difficult on the microfluidic disc platform due to surface tension changes induced by varying temperatures, thus causing operating instability. We describe here strategies for liquid reagent storage, release, incubation, and transfer, all of which utilize a single combination of actuation methods—wax valving and heat actuation by halogen lamp—on a centrifugal microfluidic device made using pristine materials. The strategies that we use to perform these steps, termed multifunctional wax valves, enable manipulation of a microlitre range fluid volume without the need for complex fabrication steps or hardware. This technology’s reliability and ease of use will hopefully allow for more powerful fluidics-based diagnostic tools to be created.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. Abi-Samra K, Clime L, Kong L et al (2011a) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 11:643–652. doi:10.1007/s10404-011-0830-5

  2. Abi-Samra K, Hanson R, Madou M, Gorkin RA (2011b) Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform. Lab Chip 11:723–726. doi:10.1039/c0lc00160k

  3. Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuators B Chem 161:1191–1197. doi:10.1016/j.snb.2011.11.080

  4. Cho Y-K, Lee J-G, Park J-M et al (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573. doi:10.1039/b616115d

  5. Ducrée J, Haeberle S, Lutz S et al (2007) The centrifugal microfluidic bio-disk platform. J Micromech Microeng 17:S103–S115. doi:10.1088/0960-1317/17/7/S07

  6. Focke M, Stumpf F, Roth G et al (2010) Centrifugal microfluidic system for primary amplification and secondary real-time PCR. Lab Chip 10:3210–3212. doi:10.1039/c0lc00161a

  7. Garcia-Cordero J, Benito-Lopez F, Diamond D, Ducree J, Ricco AJ (2009) Low-cost microfluidic single-use valves and on-board reagent storage using laser-printer technology. In: IEEE 22nd international conference on micro electro mechanical systems, pp 439–442. doi:10.1109/MEMSYS.2009.480541

  8. Gorkin R, Clime L, Madou M, Kido H (2010a) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 9:541–549. doi:10.1007/s10404-010-0571-x

  9. Gorkin R, Park J, Siegrist J et al (2010b) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773. doi:10.1039/b924109d

  10. Gorkin R, Soroori S, Southard W et al (2011) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluidics 12:345–354. doi:10.1007/s10404-011-0878-2

  11. Gorkin R, Nwankire CE, Gaughran J et al (2012) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902. doi:10.1039/c2lc20973j

  12. Hébert B, Bergeron J, Potworowski EF, Tijssen P (1993) Increased PCR sensitivity by using paraffin wax as a reaction mix overlay. Mol Cell Probes 7:249–252. doi:10.1006/mcpr.1993.1036

  13. Hoffmann J, Mark D, Lutz S et al (2010) Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge. Lab Chip 10:1480–1484. doi:10.1039/b926139g

  14. Hou H-H, Wang Y-N, Chang C-L et al (2011) Rapid glucose concentration detection utilizing disposable integrated microfluidic chip. Microfluid Nanofluidics 11:479–487. doi:10.1007/s10404-011-0813-6

  15. Kido H, Micic M, Smith D et al (2007) A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf B Biointerfaces 58:44–51. doi:10.1016/j.colsurfb.2007.03.015

  16. Kong L, Rodriguez JM, Perebikovsky A et al (2013) Novel heating and cooling techniques on a centrifugal fluidic platform for polymerase chain reaction. Microtechnol Med Biol

  17. Lutz S, Weber P, Focke M et al (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893. doi:10.1039/b921140c

  18. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Boca Raton, p 493

  19. Madou M, Zoval J, Jia G et al (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628. doi:10.1146/annurev.bioeng.8.061505.095758

  20. Malmstadt N, Hoffman AS, Stayton PS (2004) “Smart” mobile affinity matrix for microfluidic immunoassays. Lab Chip 4:412–415. doi:10.1039/b315394k

  21. Miralles V, Huerre A, Malloggi F, Jullien M-C (2013) A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics 3:33–67. doi:10.3390/diagnostics3010033

  22. Noroozi Z, Kido H, Madou MJ (2011a) Electrolysis-induced pneumatic pressure for control of liquids in a centrifugal system. J Electrochem Soc 158:P130. doi:10.1149/2.028111jes

  23. Noroozi Z, Kido H, Peytavi R et al (2011b) A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics. Rev Sci Instrum 82:064303. doi:10.1063/1.3597578

  24. Nwankire CE, Chan D-SS, Gaughran J et al (2013) Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation. Sensors (Basel) 13:11336–11349. doi:10.3390/s130911336

  25. Sagar DM, Aoudjane S, Gaudet M et al (2013) Optically induced thermal gradients for protein characterization in nanolitre-scale samples in microfluidic devices. Sci Rep 3:1–6. doi:10.1038/srep02130

  26. Siegrist J, Gorkin R, Clime L et al (2010) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluidics 9:55–63. doi:10.1007/s10404-009-0523-5

  27. Soroori S, Kulinsky L, Madou M (2013) Centrifugal microfluidics: characteristics & possibilities. In: Chakraborty S (ed) Microfluidics and microscale transport processes, pp 149–186. CRC Press, USA

  28. Sundberg SO, Wittwer CT, Gao C, Gale BK (2010) Spinning disk platform for microfluidic digital polymerase chain reaction. Anal Chem 82:1546–1550. doi:10.1021/ac902398c

  29. Van Oordt T, Barb Y, Zengerle R, Von Stetten F (2011) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. MicroTAS, pp 437–439

  30. Wainwright LA, Seifert HS (1993) Paraffin beads can replace mineral oil as an evaporation barrier in PCR. Biotechniques 14:34–36

  31. Zhang C, Xing D (2007) Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35:4223–4237. doi:10.1093/nar/gkm389

Download references


This research was supported by Genome Quebec and the National Institute of Health (Grant 1 R01 AI089541-01). The authors would also like to acknowledge Bryce Kubo and Jigar Shah for their contribution to the project.

Author information

Correspondence to Marc Madou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 44202 kb)

Supplementary material 1 (MPG 44202 kb)

Supplementary material 2 (PDF 86 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, L.X., Parate, K., Abi-Samra, K. et al. Multifunctional wax valves for liquid handling and incubation on a microfluidic CD. Microfluid Nanofluid 18, 1031–1037 (2015) doi:10.1007/s10404-014-1492-x

Download citation


  • Centrifugal
  • Microfluidic
  • Wax
  • Heat
  • Valve
  • Pump