Microfluidics and Nanofluidics

, Volume 18, Issue 5–6, pp 829–839 | Cite as

Simulations of liquid-to-solid mass transfer in a fluidized microchannel

Research Paper
  • 292 Downloads

Abstract

Liquid-to-solid mass transfer in a microfluidized bed consisting of monosized, spherical particles in a Newtonian liquid has been studied numerically. The simulations fully resolve the laminar, near-creeping flow of the solid–liquid suspension. In addition, passive scalar concentrations in the liquid at high Schmidt number (Sc up to 104) have been determined. Solids volume fractions are in the range 0.18–0.27. The concentration boundary conditions are such that the scalar can be thought of as being adsorbed on the solid particle surfaces. The simulations quantify the overall adsorption performance of the fluidized bed, and they provide insights in local variations (per particle and over individual particle surfaces) of mass transfer rates.

Keywords

Solid–liquid mass transfer Microfluidization Lattice Boltzmann method Coupled overlapping domains Particle-resolved simulations 

References

  1. Ai Y, Qian S, Liu S, Joo SW (2010) Dielectrophoretic choking phenomenon in a converging-diverging microchannel. Biomicrofluidics 4:013201-1–013201-6CrossRefGoogle Scholar
  2. Başağaoğlu H, Allwein S, Succi S, Dixon H, Carrola JT Jr, Stothoff S (2013) Two- and three-dimensional lattice Boltzmann simulations of particle migration in microchannels. Microfluid Nanofluid 15:785–796CrossRefGoogle Scholar
  3. Caiazzo A (2008) Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog Comput Fluid Dyn 8:3–10CrossRefMATHMathSciNetGoogle Scholar
  4. Chen S, Doolen GD (1989) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364CrossRefMathSciNetGoogle Scholar
  5. Derksen JJ (2009) Scalar mixing with fixed and fluidized particles in micro-reactors. Chem Eng Res Des 87:550–556CrossRefGoogle Scholar
  6. Derksen JJ (2012) Highly resolved simulations of solids suspension in a small mixing tank. AIChE J 58:3266–3278CrossRefGoogle Scholar
  7. Derksen JJ (2014a) Simulations of solid-liquid scalar transfer for a spherical particle in laminar and turbulent flow. AIChE J 60:1202–1215CrossRefGoogle Scholar
  8. Derksen JJ (2014b) Simulations of solid-liquid mass transfer in fixed and fluidized beds. Chem Eng J 255:233–244CrossRefGoogle Scholar
  9. Derksen JJ (2014c) Simulations of scalar dispersion in fluidized solid-liquid suspensions. AIChE J 60:1880–1890CrossRefGoogle Scholar
  10. Derksen JJ, Sundaresan S (2007) Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds. J Fluid Mech 587:303–336CrossRefMATHGoogle Scholar
  11. Derveaux S, Stubbe B, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedts SC (2008) Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to patient. Anal Bioanal Chem 391:2453–2467CrossRefGoogle Scholar
  12. Dörfler F, Rauscher M, Koplik J, Harting J, Dietrich S (2012) Micro- and nanoscale fluid flow on chemical channels. Soft Matter 8:9221–9234CrossRefGoogle Scholar
  13. Fan LT, Yang YC, Wen CY (1960) Mass transfer in semifluidized beds for solid-liquid system. AIChE J 6:482–487CrossRefGoogle Scholar
  14. Froment GF, Bischoff KB, De Wilde J (2011) Chemical reactor analysis and design, 3rd edn. Wiley, New YorkGoogle Scholar
  15. Gervais T, Jensen KF (2006) Mass transport and surface reactions in microfluidic systems. Chem Eng Sc 61:1102–1121CrossRefGoogle Scholar
  16. Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comp Phys 49:357–364CrossRefMATHMathSciNetGoogle Scholar
  17. Hou C, Ge W (2007) Nano-fluidization under high-gravity: a perspective view from simulation. Chem Eng Sc 62:6794–6805CrossRefGoogle Scholar
  18. Jain M, Rao A, Nandakumar K (2013) Numerical study on shape optimization of groove micromixers. Microfluid Nanofluid 15:689–699CrossRefGoogle Scholar
  19. Lakehal D, Narayanan D, Caviezel D, von Rickenbach J, Reboux S (2013) Progress in computational microfluidics using TransAT. Microfluid Nanofluid 15:415–429CrossRefGoogle Scholar
  20. Lim CT, Zhang Y (2006) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22:1197–1204CrossRefGoogle Scholar
  21. Liu YJ, Rauch CB (2003) DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation. Anal Biochem 317:76–84CrossRefGoogle Scholar
  22. Nguyen N-Q, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708-1Google Scholar
  23. Pappaert K, Vanderhoeven J, Van Hummelen P, Dutta B, Clicq D, Baron GV, Desmet G (2003) Enhancement of DNA micro-array analysis using a shear-driven micro-channel flow system. J Chromatogr A 1014:1–9CrossRefGoogle Scholar
  24. Potic B, Kersten SRA, Ye M, van der Hoef MA, Kuipers JAM (2005) Fluidization with hot compressed water in micro-reactors. Chem Eng Sci 60:5982–5990CrossRefGoogle Scholar
  25. Richardson JF, Zaki WN (1954) Sedimentation and fluidisation: part 1. Trans Instn Chem Engrs 32:35–53Google Scholar
  26. Rowe PN (1987) A convenient equation for estimation of the Richardson-Zaki exponent. Chem Eng Sc 43:2795–2796CrossRefGoogle Scholar
  27. Rowe PN, Claxton KT (1965) Heat and mass transfer from a single sphere to fluid flowing through an array. Trans Instn Chem Engrs 43:T321–T331Google Scholar
  28. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, OxfordMATHGoogle Scholar
  29. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995–1011CrossRefMATHMathSciNetGoogle Scholar
  30. ten Cate A, Nieuwstad CH, Derksen JJ, Van den Akker HEA (2002) PIV experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys Fluids 14:4012–4025CrossRefGoogle Scholar
  31. van der Graaf S, Nisisako T, Schroen CGPH, van der Sman RGM, Boom RM (2006) Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22:4144–4152CrossRefGoogle Scholar
  32. van der Zwan E, van der Sman RGM, Schroen K, Boom R (2009) Lattice Boltzmann simulations of droplet formation during microchannel emulsification. J Colloid Interface Sc 335:112–122CrossRefGoogle Scholar
  33. Wang Y, Hutter K (2001) Comparison of numerical methods with respect to convectively dominated problems. Int J Num Meth Fluids 37:721–745CrossRefMATHGoogle Scholar
  34. Yamamoto Y, Potthoff M, Tanaka T, Kajishima T, Tsuji Y (2001) Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collisions. J Fluid Mech 442:303–334CrossRefMATHGoogle Scholar
  35. Yang C, Zhang J, Koch DL, Yin X (2011) Mass/heat transfer from a neutrally buoyant sphere in simple shear flow at finite Reynolds and Peclet numbers. AIChE J 57:1419–1433CrossRefGoogle Scholar
  36. Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28CrossRefMATHGoogle Scholar
  37. Zivkovic V, Biggs MJ, Alwahabi ZT (2013) Experimental study of a liquid fluidization in a microfluidic channel. AIChE J 59:361–364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of EngineeringUniversity of AberdeenAberdeenScotland, UK
  2. 2.Chemical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations