Microfluidics and Nanofluidics

, Volume 18, Issue 4, pp 673–683 | Cite as

On the droplet velocity and electrode lifetime of digital microfluidics: voltage actuation techniques and comparison

  • Cheng Dong
  • Tianlan Chen
  • Jie Gao
  • Yanwei Jia
  • Pui-In MakEmail author
  • Mang-I Vai
  • Rui P. Martins
Research Paper


The distinct manageability of digital microfluidics (DMF) has rendered it a promising platform for building large-scale micro-reactors on a single chip for closed-loop automation. However, the limited velocity of the droplet transportation has hindered DMF from being utilized in high-throughput applications. This work investigates a control-engaged droplet actuation technique involving regular electronic hardware and computer-based software to simultaneously raise the velocity of the droplet transportation and elongate the electrode lifetime by lowering the root-mean-square value of the actuation voltage. The technique is based on a series of direct current (DC) pulses and multi-cycles of natural discharge coordinated with the droplet dynamic motions, facilitating real-time droplet position sensing. We found that the proposed technique was superior to both DC and AC in terms of the velocity. As to the electrode lifetime, all showed excellent performance under normal dielectric coating conditions, while AC (alternating current) performed the best under critical conditions. Altogether, this work exhibits a control-engaged electrode-driving scheme with a higher velocity and a longer lifetime compared with traditional DC actuation and for the first time provides a fundamental comparison among the techniques engaging different actuation signals.


Electrowetting-on-dielectric (EWOD) Digital microfluidics Transportation velocity Electrode lifetime 



This work was financially supported by the University of Macau and Macao Science and Technology Development Fund (FDCT) under No. 033/2011/A2 and State Key Lab Fund.

Supplementary material

10404_2014_1467_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 4,013 kb)

Supplementary material 2 (MPG 1,644 kb)

Supplementary material 3 (MPG 5,222 kb)


  1. Abdelgawad M, Watson MWL, Wheeler AR (2009) Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip 9:1046–1051. doi: 10.1039/b820682a CrossRefGoogle Scholar
  2. Albella JM, Montero I, Martinez-Duart JM, Parkhutik V (1991) Dielectric breakdown processes in anodic Ta205 and related oxides. J Mater Sci 26:3422–3432. doi: 10.1007/BF00557127 CrossRefGoogle Scholar
  3. Banerjee AN, Qian SZ, Joo SW (2011) High-speed droplet actuation on single-plate electrode arrays. J Colloid Interface Sci 362:567–574. doi: 10.1016/j.jcis.2011.07.014 CrossRefGoogle Scholar
  4. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8:519–526. doi: 10.1039/b717759c CrossRefGoogle Scholar
  5. Basu AS (2013) Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 13:1892–1901. doi: 10.1039/C3LC50074H CrossRefGoogle Scholar
  6. Bavière R, Boutet J, Fouillet Y (2008) Dynamics of droplet transport induced by electrowetting actuation. Microfluid Nanofluidics 4:287–294. doi: 10.1007/s10404-007-0173-4 CrossRefGoogle Scholar
  7. Bogojevic D, Chamberlain MD, Barbulovic-Nad I, Wheeler AR (2012) A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12:627–634. doi: 10.1039/c2lc20893h CrossRefGoogle Scholar
  8. Brassard D, Malic L, Normandin F, Tabrizianc M, Veres T (2008) Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8:1342–1349. doi: 10.1039/b803827a CrossRefGoogle Scholar
  9. Chakrabarty K, Fair RB, Zeng J (2010) Design tools for digital microfluidic biochips: toward functional diversification and more than moore. IEEE Trans Comput-Aided Des Integr Circuits Syst 29:1001–1017. doi: 10.1109/tcad.2010.2049153 CrossRefGoogle Scholar
  10. Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225. doi: 10.1007/s10544-006-8171-y CrossRefGoogle Scholar
  11. Chen T, Dong C, Gao J, Jia Y, Mak PI, Vai MI, Martins RP (2014) Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics. AIP Adv 4. doi: 10.1063/1.4873407
  12. Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80. doi: 10.1109/jmems.2002.807467 CrossRefGoogle Scholar
  13. Damgaci Y, Cetiner BA (2013) A frequency reconfigurable antenna based on digital microfluidics. Lab Chip 13:2883–2887. doi: 10.1039/c3lc50275a CrossRefGoogle Scholar
  14. Eydelnant IA, Uddayasankar U, Li BY, Liao MW, Wheeler AR (2012) Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab Chip 12:750–757. doi: 10.1039/c2lc21004e CrossRefGoogle Scholar
  15. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluidics 3:245–281. doi: 10.1007/s10404-007-0161-8 CrossRefGoogle Scholar
  16. Fan SK, Huang PW, Wang TT, Peng YH (2008) Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8:1325–1331. doi: 10.1039/b803204a CrossRefGoogle Scholar
  17. Fobel R, Fobel C, Wheeler AR (2013) DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl Phys Lett 102 doi: 10.1063/1.4807118
  18. Gao J et al (2013) An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13:443–451. doi: 10.1039/c2lc41156c CrossRefGoogle Scholar
  19. Gong J, Kim CJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906. doi: 10.1039/b717417a CrossRefGoogle Scholar
  20. Jebrail MJ, Wheeler AR (2009) Digital microfluidic method for protein extraction by precipitation. Anal Chem 81:330–335. doi: 10.1021/ac8021554 CrossRefGoogle Scholar
  21. Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463. doi: 10.1039/c2lc40318h CrossRefGoogle Scholar
  22. Jia YW, Mak PI, Massey C, Martins RP, Wangh LJ (2013) Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA. Lab Chip 13:4635–4641. doi: 10.1039/C3LC51049B CrossRefGoogle Scholar
  23. Liu YJ, Yao DJ, Lin HC, Chang WY, Chang HY (2008) DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. J Micromech Microeng 18 doi: 10.1088/0960-1317/18/4/045017
  24. Malic L, Veres T, Tabrizian M (2009) Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens Bioelectron 24:2218–2224. doi: 10.1016/j.bios.2008.11.031 CrossRefGoogle Scholar
  25. Malic L, Veres T, Tabrizian M (2011) Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging. Biosens Bioelectron 26:2053–2059. doi: 10.1016/j.bios.2010.09.001 CrossRefGoogle Scholar
  26. Miller EM, Ng AHC, Uddayasankar U, Wheeler AR (2011) A digital microfluidic approach to heterogeneous immunoassays. Anal Bioanal Chem 399:337–345. doi: 10.1007/s00216-010-4368-2 CrossRefGoogle Scholar
  27. Mousa NA et al. (2009) Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci Transl Med 1 doi: 10.1126/scitranslmed.3000105
  28. Murran MA, Najjaran H (2012a) Capacitance-based droplet position estimator for digital microfluidic devices. Lab Chip 12:2053–2059. doi: 10.1039/c2lc21241b CrossRefGoogle Scholar
  29. Murran MA, Najjaran H (2012b) Direct current pulse train actuation to enhance droplet control in digital microfluidics. Appl Phys Lett 101:144102. doi: 10.1063/1.4756914 CrossRefGoogle Scholar
  30. Nelson WC, Kim CJ (2011) Monolithic fabrication of EWOD chips for picoliter droplets. J Microelectromech Syst 20:1419–1427. doi: 10.1109/jmems.2011.2167673 CrossRefGoogle Scholar
  31. Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812. doi: 10.1021/ac3020627 CrossRefGoogle Scholar
  32. Noh JH, Noh J, Kreit E, Heikenfeldb J, Rack PD (2012) Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors. Lab Chip 12:353–360. doi: 10.1039/C1LC20851A CrossRefGoogle Scholar
  33. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101. doi: 10.1039/b110474h CrossRefGoogle Scholar
  34. Rajabi N, Dolatabadi A (2010) A novel electrode shape for electrowetting-based microfluidics. Colloid Surf A-Physicochem Eng Asp 365:230–236. doi: 10.1016/j.colsurfa.2010.01.039 CrossRefGoogle Scholar
  35. Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuator B-Chem 87:201–206. doi: 10.1016/s0925-4005(02)00223-x CrossRefGoogle Scholar
  36. Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens Actuator B-Chem 98:319–327. doi: 10.1016/j.snb.2003.09.030 CrossRefGoogle Scholar
  37. Schertzer MJ, Ben-Mrad R, Sullivan PE (2010) Using capacitance measurements in EWOD devices to identify fluid composition and control droplet mixing. Sens Actuator B-Chem 145:340–347. doi: 10.1016/j.snb.2009.12.019 CrossRefGoogle Scholar
  38. Schertzer MJ, Ben Mrad R, Sullivan PE (2012) Automated detection of particle concentration and chemical reactions in EWOD devices. Sens Actuator B-Chem 164:1–6. doi: 10.1016/j.snb.2012.01.027 CrossRefGoogle Scholar
  39. Sen P, Kim CJ (2009) A fast liquid-metal droplet microswitch using EWOD-driven contact-line sliding. J Microelectromech Syst 18:174–185. doi: 10.1109/jmems.2008.2008624 CrossRefGoogle Scholar
  40. Sethi G, Bontempo B, Furman E, Horn MW, Lanagan MT, Bharadwaja SSN, Li J (2011) Impedance analysis of amorphous and polycrystalline tantalum oxide sputtered films. J Mater Res 26:745–753. doi: 10.1557/jmr.2010.77 CrossRefGoogle Scholar
  41. Shah GJ, Ding HJ, Sadeghi S, Chen SP, Kim CJ, van Dam RM (2013) On-demand droplet loading for automated organic chemistry on digital microfluidics. Lab Chip 13:2785–2795. doi: 10.1039/c3lc41363b CrossRefGoogle Scholar
  42. Shibata S (1996) Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films 277:1–4. doi: 10.1016/0040-6090(95)08234-4 CrossRefGoogle Scholar
  43. Shih SCC, Fobel R, Kumar P, Wheeler AR (2011) A feedback control system for high-fidelity digital microfluidics. Lab Chip 11:535–540. doi: 10.1039/c0lc00223b CrossRefGoogle Scholar
  44. Shih SCC et al (2012) Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem 84:3731–3738. doi: 10.1021/ac300305s CrossRefGoogle Scholar
  45. Shih SCC, Barbulovic-Nad I, Yang XN, Fobel R, Wheeler AR (2013) Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens Bioelectron 42:314–320. doi: 10.1016/j.bios.2012.10.035 CrossRefGoogle Scholar
  46. Sista R et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104. doi: 10.1039/b814922d CrossRefGoogle Scholar
  47. Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–375. doi: 10.1039/c1lc20844f CrossRefGoogle Scholar
  48. Todd Thorsen SJM, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584. doi: 10.1126/science.1076996 CrossRefGoogle Scholar
  49. Wei AX, Ge ZX, Zhao XH, Liu J, Zhao Y (2011) Electrical and optical properties of tantalum oxide thin films prepared by reactive magnetron sputtering. J Alloy Compd 509:9758–9763. doi: 10.1016/j.jallcom.2011.08.019 CrossRefGoogle Scholar
  50. Witters D, Knez K, Ceyssens F, Puers R, Lammertyn J (2013) Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13:2047–2054. doi: 10.1039/c3lc50119a CrossRefGoogle Scholar
  51. Zeng XY, Zhang KD, Pan J, Chen GP, Liu AQ, Fan SK, Zhou J (2013) Chemiluminescence detector based on a single planar transparent digital microfluidic device. Lab Chip 13:2714–2720. doi: 10.1039/c3lc50170a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Cheng Dong
    • 1
  • Tianlan Chen
    • 1
  • Jie Gao
    • 1
  • Yanwei Jia
    • 1
  • Pui-In Mak
    • 1
    Email author
  • Mang-I Vai
    • 1
  • Rui P. Martins
    • 1
  1. 1.State-Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECEUniversity of MacauTaipaChina

Personalised recommendations