Advertisement

Microfluidics and Nanofluidics

, Volume 18, Issue 3, pp 383–390 | Cite as

Microfluidic method for creating monodisperse viscous single emulsions via core–shell templating

  • Dimitris N. Josephides
  • Shahriar SajjadiEmail author
Research Paper

Abstract

Creating droplets with viscous media in microfluidic devices is extremely problematic due to the early onset of jetting. This report presents a method of creating highly monodisperse single emulsions of high viscosity (≈100 cP for both dispersed and continuous phases) using glass-based microfluidics. This method utilises a three-phase flow technique, where internal water droplets are introduced into a would-be-jetting oil stream forcing the system into a quasi-dripping regime to produce highly monodisperse core–shell drops that later rupture to form single drops. Emulsions with droplet diameters between 75 and 120 μm with a C v < 2 % were created at flow rates of up to 500 μl/h using this three-phase technique where similar emulsions using the standard two-phase technique could not be obtained. The rate of addition of internal droplets to induce a quasi-dripping mode was found to be similar to the dominant perturbation frequencies required to rupture a jet according to Plateau–Rayleigh instability theory.

Keywords

Monodisperse Viscous droplets Core–shell Droplet templating Dripping Jetting 

Notes

Acknowledgments

We acknowledge the use made of Vision Research Phantom V7.1 which was borrowed from the EPSRC (Engineering and Physical Sciences Research Council) Engineering Instrument Pool.

Supplementary material

Supplementary material 1 (MPEG 2681 kb)

Supplementary material 2 (MPEG 3489 kb)

References

  1. Abate AR, Kutsovsky M, Seiffert S et al (2011) Synthesis of Monodisperse Microparticles from Non-Newtonian Polymer Solutions with Microfluidic Devices. Adv Mater 23:1757–1760. doi: 10.1002/adma.201004275 CrossRefGoogle Scholar
  2. Chu L-Y, Utada AS, Shah RK et al (2007) Controllable Monodisperse Multiple Emulsions. Angew Chem Int Ed 46:8970–8974. doi: 10.1002/anie.200701358 CrossRefGoogle Scholar
  3. Day P, Manz A, Zhang Y (2012) Microdroplet technology: principles and emerging applications in biology and chemistry. Springer, New YorkCrossRefGoogle Scholar
  4. Dendukuri D, Pregibon DC, Collins J et al (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5:365–369. doi: 10.1038/nmat1617 CrossRefGoogle Scholar
  5. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865CrossRefzbMATHGoogle Scholar
  6. Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036601. doi: 10.1088/0034-4885/71/3/036601 CrossRefGoogle Scholar
  7. Huang S-B, Wu M-H, Lee G-B (2010) Microfluidic device utilizing pneumatic micro-vibrators to generate alginate microbeads for microencapsulation of cells. Sens Actuators B Chem 147:755–764. doi: 10.1016/j.snb.2010.04.021 CrossRefGoogle Scholar
  8. McClements DJ (1998) Food Emulsions: Principles, Practice, and Techniques. CRC PressGoogle Scholar
  9. Nisisako T (2008) Microstructured Devices for Preparing Controlled Multiple Emulsions. Chem Eng Technol 31:1091–1098. doi: 10.1002/ceat.200800119 CrossRefGoogle Scholar
  10. Nisisako T, Torii T (2007) Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles. Adv Mater 19:1489–1493. doi: 10.1002/adma.200700272 CrossRefGoogle Scholar
  11. Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287. doi: 10.1039/b713141k CrossRefGoogle Scholar
  12. Nunes JK, Tsai SSH, Wan J, Stone HA (2013) Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J Phys Appl Phys 46:114002. doi: 10.1088/0022-3727/46/11/114002 CrossRefGoogle Scholar
  13. Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 1:4CrossRefGoogle Scholar
  14. Rayleigh Lord (1879) On the Capillary Phenomena of Jets. Proc R Soc Lond 29:71–97. doi: 10.1098/rspl.1879.0015 CrossRefGoogle Scholar
  15. Sauret A, Cheung Shum H (2012) Forced generation of simple and double emulsions in all-aqueous systems. Appl Phys Lett 100:154106. doi: 10.1063/1.3702434 CrossRefGoogle Scholar
  16. Sauret A, Shum HC (2012) Beating the Jetting Regime. Int J Nonlinear Sci Numer Simul 13:351–362. doi: 10.1515/ijnsns-2011-0183 MathSciNetGoogle Scholar
  17. Shah R, Shum H, Rowat A et al (2008) Designer emulsions using microfluidics. Mater Today 11:18–27. doi: 10.1016/S1369-7021(08)70053-1 Google Scholar
  18. Shum HC, Sauret A, Fernandez-Nieves A et al (2010) Corrugated interfaces in multiphase core–annular flow. Phys Fluids 22:082002. doi: 10.1063/1.3480561 CrossRefGoogle Scholar
  19. Song Y, Shum HC (2012) Monodisperse w/w/w Double Emulsion Induced by Phase Separation. Langmuir 28:12054–12059. doi: 10.1021/la3026599 CrossRefGoogle Scholar
  20. Sun BJ, Shum HC, Holtze C, Weitz DA (2010) Microfluidic Melt Emulsification for Encapsulation and Release of Actives. ACS Appl Mater Interfaces 2:3411–3416. doi: 10.1021/am100860b CrossRefGoogle Scholar
  21. Tan Y-C, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B Chem 114:350–356. doi: 10.1016/j.snb.2005.06.008 CrossRefGoogle Scholar
  22. Utada AS (2005) Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 308:537–541. doi: 10.1126/science.1109164 CrossRefGoogle Scholar
  23. Van Dijke KC, Schroën KCPGH, Boom RM (2008) Microchannel Emulsification: From Computational Fluid Dynamics to Predictive Analytical Model. Langmuir 24:10107–10115. doi: 10.1021/la801411x CrossRefGoogle Scholar
  24. Vladisavljević GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluidics 13:151–178. doi: 10.1007/s10404-012-0948-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsKings College LondonLondonUK

Personalised recommendations