Advertisement

Microfluidics and Nanofluidics

, Volume 18, Issue 2, pp 175–184 | Cite as

Generation of tunable and pulsatile concentration gradients via microfluidic network

  • Bingpu Zhou
  • Wei Xu
  • Cong Wang
  • Yeungyeung Chau
  • Xiping Zeng
  • Xi-Xiang Zhang
  • Rong Shen
  • Weijia WenEmail author
Research Paper

Abstract

We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

Keywords

PDMS Concentration Gradient Duty Cycle Microfluidic Chip Hydraulic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Prof. Andrew W. O. Poon’s research group, of Department of Electronic and Computer Engineering in HKUST, for their assistance in COMSOL Multiphysics simulations. This publication is based on work partially supported by Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST), Hong Kong RGC Grants HKUST 604710 and 605411, and National Natural Science Foundation of China (Grant No. 11290165). The work is also partially supported by the Nanoscience and Nanotechnology Program at HKUST.

Supplementary material

10404_2014_1432_MOESM1_ESM.docx (300 kb)
Supplementary material 1 (DOCX 299 kb)

Supplementary material 2 (AVI 3012 kb)

References

  1. Abhyankar VV, Lokuta MA et al (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389–393CrossRefGoogle Scholar
  2. Abhyankar VV, Toepke MW et al (2008) A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515CrossRefGoogle Scholar
  3. Ahmed D, Chan CY et al (2013) Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13(3):328–331CrossRefGoogle Scholar
  4. Ainla A, Jansson ET et al (2010) A microfluidic pipette for single-cell pharmacology. Anal Chem 82(11):4529–4536CrossRefGoogle Scholar
  5. Atencia J, Morrow J et al (2009) The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9:2707–2714CrossRefGoogle Scholar
  6. Atencia J, Cooksey GA et al (2012) A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12(2):309–316CrossRefGoogle Scholar
  7. Beta C, Wyatt D et al (2007) Flow photolysis for spatiotemporal stimulation of single cells. Anal Chem 79(10):3940–3944CrossRefGoogle Scholar
  8. Boyden S (1961) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466CrossRefGoogle Scholar
  9. Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  10. Carlo DD (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046CrossRefGoogle Scholar
  11. Chen CY, Wo AM et al (2012) A microfluidic concentration generator for dose-response assays on ion channel pharmacology. Lab Chip 12(4):794–801CrossRefGoogle Scholar
  12. Chung BG, Flanagan LA et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406CrossRefGoogle Scholar
  13. Cimetta E, Cannizzaro C et al (2010) Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of β-catenin signaling. Lab Chip 10(23):3277–3283CrossRefGoogle Scholar
  14. Dertinger SKW, Chiu DT et al (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246CrossRefGoogle Scholar
  15. Estes MD, Hurth C et al (2013) A tuneable array of unique steady-state microfluidic gradients. Phys Chem Chem Phys 15(31):12805–12814CrossRefGoogle Scholar
  16. Haessler U, Pisano M et al (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. PNAS 108(14):5614–5619CrossRefGoogle Scholar
  17. Holden MA, Kumar S et al (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B Chem 92(1–2):199–207CrossRefGoogle Scholar
  18. Horrocks MH, Rajah L et al (2013) Single-molecule measurements of transient biomolecular complexes through microfluidic dilution. Anal Chem 85(14):6855–6859CrossRefGoogle Scholar
  19. Hung PJ, Lee PJ et al (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol and Bioeng 89(1):1–8CrossRefGoogle Scholar
  20. Irimia D, Geba DA et al (2006a) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477CrossRefGoogle Scholar
  21. Irimia D, Liu SY et al (2006b) Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6(2):191–198CrossRefGoogle Scholar
  22. Irimia D, Charras G et al (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12):1783–1790CrossRefGoogle Scholar
  23. Jang YH, Hancock MJ et al (2011) An integrated microfluidic device for two-dimensional combinatorial dilution. Lab Chip 11(19):3277–3286CrossRefGoogle Scholar
  24. Jeon NL, Dertinger SKW et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316CrossRefGoogle Scholar
  25. Jeon NL, Baskaran H et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830CrossRefGoogle Scholar
  26. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57CrossRefGoogle Scholar
  27. Kim C, Lee K et al (2008) A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 8(3):473–479CrossRefGoogle Scholar
  28. Kim D, Lokuta MA et al (2009) Selective and tunable gradient device for cell culture and chemotaxis study. Lab Chip 9(12):1797–1800CrossRefGoogle Scholar
  29. Kress H, Park JG et al (2009) Cell stimulation with optically manipulated microsources. Nat Methods 6(12):905–909CrossRefGoogle Scholar
  30. Kuczenski B, Ruder WC et al (2009) Probing cellular dynamics with a chemical signal generator. PLoS ONE 4(3):e4847CrossRefGoogle Scholar
  31. Lam EW, Cooksey GA et al (2006) Microfluidic circuits with tunable flow resistances. Appl Phys Lett 89(16):164105CrossRefGoogle Scholar
  32. Lee K, Kim C et al (2010) Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8:677–685CrossRefGoogle Scholar
  33. Lee K, Kim C et al (2011) Microfluidic concentration-on-demand combinatorial dilutions. Microfluid Nanofluid 11:75–86CrossRefGoogle Scholar
  34. Li XJ, Chen YC et al (2011) A simple and fast microfluidic approach of same-single-cell analysis (SASCA) for the study of multidrug resistance modulation in cancer cells. Lab Chip 11(7):1378–1384CrossRefGoogle Scholar
  35. Lin F, Butcher EC (2006) T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11):1462–1469CrossRefGoogle Scholar
  36. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276(75):75–81CrossRefGoogle Scholar
  37. Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231CrossRefGoogle Scholar
  38. Ming GL, Wong ST et al (2002) Adaptation in the chemotactic guidance of nerve growth cones. Nature 417(6887):411–418CrossRefGoogle Scholar
  39. Morel M, Galas JC et al (2012) Concentration landscape generators for shear free dynamic chemical stimulation. Lab Chip 12(7):1340–1346CrossRefGoogle Scholar
  40. Nagai M, Ryu S et al (2010) Chemical control of Vorticella bioactuator using microfluidics. Lab Chip 10(12):1574–1578CrossRefGoogle Scholar
  41. Nandagopal S, Wu D et al (2011) Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS ONE 6(3):e18183CrossRefGoogle Scholar
  42. Oh KW, Lee K et al (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3):515–545CrossRefMathSciNetGoogle Scholar
  43. Park ES, DiFeo MA et al (2013) Sequentially pulsed fluid delivery to establish soluble gradients within a scalable microfluidic chamber array. Biomicrofluidics 7:011804CrossRefGoogle Scholar
  44. Rosa P, Tenreiro S et al (2012) High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment. Biomicrofluidics 6(1):014109CrossRefGoogle Scholar
  45. Saadi W, Rhee SW et al (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9:627–635CrossRefGoogle Scholar
  46. Toetsch S, Olwell P et al (2009) The evolution of chemotaxis assays from static models to physiologically relevant platforms. Integr Biol 1(2):170–181CrossRefGoogle Scholar
  47. Toh AGG, Wang ZP et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18CrossRefGoogle Scholar
  48. Vandersarl JJ, Xu AM et al (2011) Rapid spatial and temporal controlled signal delivery over large cell culture areas. Lab Chip 11(18):3057–3063CrossRefGoogle Scholar
  49. Wang SJ, Saadi W et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300(1):180–189CrossRefGoogle Scholar
  50. Wang CJ, Li X et al (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8(2):227–237CrossRefGoogle Scholar
  51. Yang CG, Wu YF et al (2011) A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 11(19):3305–3312CrossRefGoogle Scholar
  52. Zicha D, Dunn GA et al (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(4):769–775Google Scholar
  53. Zigmond SH, Hirsch JG (1973) Leukocyte locomotion and chemotaxis. J Exp Med 137(2):387–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bingpu Zhou
    • 1
  • Wei Xu
    • 2
  • Cong Wang
    • 1
  • Yeungyeung Chau
    • 1
  • Xiping Zeng
    • 1
  • Xi-Xiang Zhang
    • 2
  • Rong Shen
    • 3
  • Weijia Wen
    • 1
    • 4
    Email author
  1. 1.Nano Science and Technology Program and KAUST-HKUST Micro/Nanofluidic Joint LaboratoryThe Hong Kong University of Science and TechnologyKowloonHong Kong
  2. 2.Imaging and Characterization Core Lab and Division of Physical Science and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Department of PhysicsThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations