Microfluidics and Nanofluidics

, Volume 18, Issue 2, pp 167–174 | Cite as

Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow

  • Ye Wang
  • Yang Gao
  • Hans M. Wyss
  • Patrick D. Anderson
  • Jaap M. J. den Toonder
Research Paper

Abstract

Microscopic hair-like structures, such as cilia, exist ubiquitously in nature and are used by various organisms for transportation purposes. Many efforts have been made to mimic the fluid pumping function of cilia, but most of the fabrication processes of these “artificial cilia” are tedious and expensive, hindering their practical applications. In this paper, an attractive and potentially cost-effective, magnetic fiber drawing fabrication technique of magnetic artificial cilia is demonstrated. Our artificial cilia are able to generate a substantial fluid net flow velocity of water of up to 70 µm/s (corresponding to a generated volumetric flow rate about 0.6 µL/min and a pressure difference of about 0.04 Pa) in a closed-loop microfluidic channel when actuated using an external magnetic field. A detailed analysis of the relationship between the experimentally observed cilia kinematics and corresponding induced flow is in line with a previously reported theoretical/numerical study.

Keywords

Artificial cilia Microfluidics Actuators Flow generation 

Notes

Acknowledgments

This research forms part of the research programme of the Dutch Polymer Institute DPI, project #689.

Supplementary material

Supplementary material 1 (MP4 4516 kb)

Supplementary material 2 (MP4 10414 kb)

Supplementary material 3 (MP4 2983 kb)

References

  1. Babataheri A, Roper M, Fermigier M, Du Roure O (2011) Tethered fleximags as artificial cilia. J Fluid Mech 678:5–13. doi: 10.1017/S002211201100005x CrossRefMATHGoogle Scholar
  2. Belardi J, Schorr N, Prucker O, Ruhe J (2011) Artificial cilia: generation of magnetic actuators in microfluidic systems. Adv Funct Mater 21(17):3314–3320CrossRefGoogle Scholar
  3. den Toonder JMJ, Onck PR (2013) Microfluidic manipulation with artificial/bioinspired cilia. Trends Biotechnol 31(2):85–91CrossRefGoogle Scholar
  4. den Toonder J, Bos F, Broer D, Filippini L, Gillies M, de Goede J, Mol T, Reijme M, Talen W, Wilderbeek H, Khatavkar V, Anderson P (2008) Artificial cilia for active micro-fluidic mixing. Lab Chip 8(4):533–541CrossRefGoogle Scholar
  5. Downton MT, Stark H (2009) Beating kinematics of magnetically actuated cilia. EPL 85(4):44002CrossRefGoogle Scholar
  6. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437(7060):862–865CrossRefGoogle Scholar
  7. Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7(5):1428–1434CrossRefGoogle Scholar
  8. Fahrni F, Prins MWJ, van Ijzendoorn LJ (2009) Micro-fluidic actuation using magnetic artificial cilia. Lab Chip 9(23):3413–3421CrossRefGoogle Scholar
  9. Gao Y, Hulsen MA, Kang TG, Toonder JMJd (2012) Numerical and experimental study of rotating magnetic particle chain in a viscous fluid. Phys Rev E 86:041503. doi: 10.1103/PhysRevE.86.041503 CrossRefGoogle Scholar
  10. Hussong J, Schorr N, Belardi J, Prucker O, Ruhe J, Westerweel J (2011) Experimental investigation of the flow induced by artificial cilia. Lab Chip 11(12):2017–2022CrossRefGoogle Scholar
  11. Khaderi SN, Craus CB, Hussong J, Schorr N, Belardi J, Westerweel J, Prucker O, Ruhe J, den Toonder JMJ, Onck PR (2011) Magnetically-actuated artificial cilia for microfluidic propulsion. Lab Chip 11(12):2002–2010CrossRefGoogle Scholar
  12. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64. doi: 10.1088/0960-1317/14/6/R01 CrossRefGoogle Scholar
  13. Purcell EM (1977) Life at low Reynolds-number. Am J Phys 45(1):3–11. doi: 10.1119/1.10903 CrossRefMathSciNetGoogle Scholar
  14. Shields AR, Fiser BL, Evans BA, Falvo MR, Washburn S, Superfine R (2010) Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc Natl Acad Sci USA 107(36):15670–15675CrossRefGoogle Scholar
  15. van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8(8):677–682CrossRefGoogle Scholar
  16. Vilfan M, Potocnik A, Kavcic B, Osterman N, Poberaj I, Vilfan A, Babic D (2010) Self-assembled artificial cilia. Proc Natl Acad Sci USA 107(5):1844–1847CrossRefGoogle Scholar
  17. Wang Y, Gao Y, Wyss H, Anderson P, den Toonder J (2013) Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip 13(17):3360–3366. doi: 10.1039/c3lc50458a CrossRefGoogle Scholar
  18. White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  19. Zarzar LD, Kim P, Aizenberg J (2011) Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv Mater 23(12):1442–1446CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ye Wang
    • 1
    • 2
  • Yang Gao
    • 1
  • Hans M. Wyss
    • 1
  • Patrick D. Anderson
    • 1
  • Jaap M. J. den Toonder
    • 1
  1. 1.Institute for Complex Molecular Systems ICMS, Materials Technology Institute MaTeEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Dutch Polymer Institute DPIEindhovenThe Netherlands

Personalised recommendations