Microfluidics and Nanofluidics

, Volume 17, Issue 6, pp 973–982 | Cite as

Combining positive and negative magnetophoreses to separate particles of different magnetic properties

  • Taotao Zhu
  • Rui Cheng
  • Yufei Liu
  • Jian He
  • Leidong Mao
Research Paper

Abstract

A new separation method that combines both positive and negative magnetophoreses based on ferrofluids is used to separate mixtures of particles with different magnetic properties. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic field gradients, particles with a larger magnetization within the ferrofluids are attracted to a magnet while the ones with a smaller magnetization are pushed away from it. Based on this principle, we report the design, modeling, fabrication, and characterization of the separation device and use it to separate magnetic and non-magnetic particles, as well as particles with different magnetizations. This scheme is simple, cost-effective, and label-free compared to other existing techniques.

Keywords

Separation Ferrofluid Microfluidics Magnetophoresis 

Notes

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R21GM104528. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. Erb RM, Son HS, Samanta B, Rotello VM, Yellen BB (2009) Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457(7232):999–1002. doi: 10.1038/Nature07766 CrossRefGoogle Scholar
  2. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563. doi: 10.1021/Cr9001929 CrossRefGoogle Scholar
  3. Hahn YK, Park JK (2011) Versatile immunoassays based on isomagnetophoresis. Lab Chip 11(12):2045–2048. doi: 10.1039/C0lc00569j CrossRefGoogle Scholar
  4. Jing Y, Mal N, Williams PS, Mayorga M, Penn MS, Chalmers JJ, Zborowski M (2008) Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis. Faseb J 22(12):4239–4247. doi: 10.1096/Fj.07-105544 CrossRefGoogle Scholar
  5. Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Kang JH, Choi S, Lee W, Park JK (2008) Isomagnetophoresis to discriminate subtle difference in magnetic susceptibility. J Am Chem Soc 130(2):396–397. doi: 10.1021/Ja0770678 CrossRefGoogle Scholar
  7. Khalil KS, Sagastegui A, Li Y, Tahir MA, Socolar JES, Wiley BJ, Yellen BB (2012) Binary colloidal structures assembled through Ising interactions. Nat Commun 3:794. doi: 10.1038/Ncomms1798 CrossRefGoogle Scholar
  8. Kose AR, Koser H (2012) Ferrofluid mediated nanocytometry. Lab Chip 12(1):190–196. doi: 10.1039/C1lc20864k CrossRefGoogle Scholar
  9. Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106(51):21478–21483. doi: 10.1073/Pnas.0912138106 CrossRefGoogle Scholar
  10. Krebs MD, Erb RM, Yellen BB, Samanta B, Bajaj A, Rotello VM, Alsberg E (2009) Formation of ordered cellular structures in suspension via label-free negative magnetophoresis. Nano Lett 9(5):1812–1817. doi: 10.1021/Nl803757u CrossRefGoogle Scholar
  11. Li KH, Yellen BB (2010) Magnetically tunable self-assembly of colloidal rings. Appl Phys Lett 97(8):083105. doi: 10.1063/1.3483137 CrossRefGoogle Scholar
  12. Liang LT, Xuan XC (2012) Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid Nanofluidics 13(4):637–643. doi: 10.1007/S10404-012-1003-X CrossRefGoogle Scholar
  13. Liang LT, Zhu JJ, Xuan XC (2011) Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows. Biomicrofluidics 5(3):034110. doi: 10.1063/1.3618737 CrossRefGoogle Scholar
  14. Liu CX, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102014. doi: 10.1063/1.3116091 CrossRefGoogle Scholar
  15. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248. doi: 10.1109/Tmag.1981.1061188 CrossRefGoogle Scholar
  16. Mihajlovic G, Aledealat K, Xiong P, Von Molnar S, Field M, Sullivan GJ (2007) Magnetic characterization of a single superparamagnetic bead by phase-sensitive micro-Hall magnetometry. Appl Phys Lett 91(17):172518. doi: 10.1063/1.2802732 CrossRefGoogle Scholar
  17. Nguyen N-T (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluidics 12(1–4):1–16. doi: 10.1007/s10404-011-0903-5 CrossRefGoogle Scholar
  18. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38. doi: 10.1039/B513005k CrossRefGoogle Scholar
  19. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980. doi: 10.1039/B604542a CrossRefGoogle Scholar
  20. Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062. doi: 10.1016/j.chroma.2009.06.039 CrossRefGoogle Scholar
  21. Robert D, Pamme N, Conjeaud H, Gazeau F, Iles A, Wilhelm C (2011) Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11(11):1902–1910. doi: 10.1039/C0lc00656d CrossRefGoogle Scholar
  22. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  23. Shen F, Hwang H, Hahn YK, Park JK (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84(7):3075–3081. doi: 10.1021/Ac201505j CrossRefGoogle Scholar
  24. Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302. doi: 10.1039/B705045c CrossRefGoogle Scholar
  25. Skjeltorp AT (1983) One-dimensional and two-dimensional crystallization of magnetic holes. Phys Rev Lett 51(25):2306–2309. doi: 10.1103/Physrevlett.51.2306 CrossRefGoogle Scholar
  26. Tarn MD, Hirota N, Iles A, Pamme N (2009a) On-chip diamagnetic repulsion in continuous flow. Sci Technol Adv Mater 10(1):014611. doi: 10.1088/1468-6996/10/1/014611 CrossRefGoogle Scholar
  27. Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009b) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115–4122. doi: 10.1016/J.Jmmm.08.016 CrossRefGoogle Scholar
  28. van Ommering K, Nieuwenhuis JH, van IJzendoorn LJ, Koopmans B, Prins MWJ (2006) Confined Brownian motion of individual magnetic nanoparticles on a chip: characterization of magnetic susceptibility. Appl Phys Lett 89(14):142511. doi: 10.1063/1.2360246 CrossRefGoogle Scholar
  29. Vojtíšek M, Tarn M, Hirota N, Pamme N (2012) Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid Nanofluidics 13(4):625–635. doi: 10.1007/s10404-012-0979-6 CrossRefGoogle Scholar
  30. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184. doi: 10.1146/Annurev.Matsci.28.1.153 CrossRefGoogle Scholar
  31. Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci USA 102(25):8860–8864. doi: 10.1073/Pnas.0500409102 CrossRefGoogle Scholar
  32. Zeng J, Chen C, Vedantam P, Brown V, Tzeng TRJ, Xuan XC (2012) Three-dimensional magnetic focusing of particles and cells in ferrofluid flow through a straight microchannel. J Micromech Microeng 22(10):105018. doi: 10.1088/0960-1317/22/10/105018 CrossRefGoogle Scholar
  33. Zhu TT, Marrero F, Mao LD (2010) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluidics 9(4–5):1003–1009. doi: 10.1007/S10404-010-0616-1 CrossRefGoogle Scholar
  34. Zhu T, Cheng R, Mao L (2011a) Focusing microparticles in a microfluidic channel with ferrofluids. Microfluid Nanofluidics 11(6):695–701. doi: 10.1007/s10404-011-0835-0 CrossRefGoogle Scholar
  35. Zhu TT, Lichlyter DJ, Haidekker MA, Mao LD (2011b) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluidics 10(6):1233–1245. doi: 10.1007/S10404-010-0754-5 CrossRefGoogle Scholar
  36. Zhu TT, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao LD (2012) Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluid Nanofluidics 13(4):645–654. doi: 10.1007/S10404-012-1004-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Taotao Zhu
    • 1
  • Rui Cheng
    • 2
  • Yufei Liu
    • 3
  • Jian He
    • 3
  • Leidong Mao
    • 2
  1. 1.Department of Chemistry, Nanoscale Science and Engineering CenterThe University of GeorgiaAthensUSA
  2. 2.College of Engineering, Nanoscale Science and Engineering CenterThe University of GeorgiaAthensUSA
  3. 3.Department of Physics and AstronomyClemson UniversityClemsonUSA

Personalised recommendations